【題目】已知函數f(x)在R上滿足f(x)=2f(2﹣x)﹣x2+8x﹣8,則曲線y=f(x)在點(1,f(1))處的切線方程是( )
A.y=﹣2x+3
B.y=x
C.y=3x﹣2
D.y=2x﹣1
【答案】D
【解析】解:∵f(x)=2f(2﹣x)﹣x2+8x﹣8,
∴f(2﹣x)=2f(x)﹣(2﹣x)2+8(2﹣x)﹣8.
∴f(2﹣x)=2f(x)﹣x2+4x﹣4+16﹣8x﹣8.
將f(2﹣x)代入f(x)=2f(2﹣x)﹣x2+8x﹣8
得f(x)=4f(x)﹣2x2﹣8x+8﹣x2+8x﹣8.
∴f(x)=x2,f′(x)=2x,
∴y=f(x)在(1,f(1))處的切線斜率為y′=2.
∴函數y=f(x)在(1,f(1))處的切線方程為y﹣1=2(x﹣1),
即y=2x﹣1.
故答案為:D.
根據所給抽象函數的關系式求得函數的具體表達式,再利用導數求得切線的斜率進而求得切線的方程.
科目:高中數學 來源: 題型:
【題目】過點(﹣1,3)且平行于直線x﹣2y+3=0的直線方程為( )
A.x﹣2y+7=0
B.2x+y﹣1=0
C.x﹣2y﹣5=0
D.2x+y﹣5=0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數集A={a1 , a2 , …,an}(1=a1<a2<…<an , n≥4)具有性質P:對任意的k(2≤k≤n),i,j(1≤i≤j≤n),使得ak=ai+aj成立.
(Ⅰ)分別判斷數集{1,2,4,6}與{1,3,4,7}是否具有性質P,并說明理由;
(Ⅱ)求證:a4≤2a1+a2+a3;
(Ⅲ)若an=72,求n的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設m,n是兩條不同的直線,α,β是兩個不同的平面,下列命題正確的是( )
A.若m⊥n,m⊥α,n∥β,則α∥β
B.若m∥α,n∥β,α∥β,則m∥n
C.若m⊥α,n∥β,α∥β,則m⊥n
D.若m∥n,m∥α,n∥β,則α∥β
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數y=x2e2x的導數是( )
A.y=(2x2+x2)ex
B.y=2xe2x+x2ex
C.y=2xe2x+x2e2x
D.y=(2x+2x2)e2x
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋內分別有紅、白、黑球3,2,1個,從中任取2個,則互斥而不對立的兩個事件是( )
A.至少有一個白球;都是白球
B.至少有一個白球;至少有一個紅球
C.恰有一個白球;一個白球一個黑球
D.至少有一個白球;紅、黑球各一個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】命題p:若a>b,則|a|>|b|;命題q:當a=0時,f(x)=xln(x+a)2為奇函數,則下列命題中為真命題的是( )
A.(¬p)∨q
B.p∨(¬q)
C.p∧q
D.(¬p)∧(¬q)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com