【題目】已知橢圓:
的兩個焦點與短軸的一個端點是直角三角形的三個頂點,直線
:
與橢圓
有且只有一個公共點.
(Ⅰ)求橢圓的方程及點
的坐標;
(Ⅱ)設是坐標原點,直線
平行于
,與橢圓
交于不同的兩點
、
,且與直線
交于點
,證明:存在常數
,使得
,并求
的值.
【答案】(Ⅰ),點T坐標為(2,1);(Ⅱ)
.
【解析】試題分析:本題考查橢圓的標準方程及其幾何性質,考查學生的分析問題、解決問題的能力和數形結合的思想.第(Ⅰ)問,利用直線和橢圓只有一個公共點,聯立方程,消去y得關于x的方程有兩個相等的實數根,解出b的值,從而得到橢圓E的方程;第(Ⅱ)問,利用橢圓的幾何性質,數形結合,根據根與系數的關系,進行求解.
試題解析:(Ⅰ)由已知, ,則橢圓E的方程為
.
由方程組得
.①
方程①的判別式為,由
,得
,
此時方程①的解為,
所以橢圓E的方程為.
點T坐標為(2,1).
(Ⅱ)由已知可設直線的方程為
,
由方程組可得
所以P點坐標為(),
.
設點A,B的坐標分別為.
由方程組可得
.②
方程②的判別式為,由
,解得
.
由②得.
所以,
同理,
所以
.
故存在常數,使得
.
科目:高中數學 來源: 題型:
【題目】為了美化環境,某公園欲將一塊空地規劃建成休閑草坪,休閑草坪的形狀為如圖所示的四邊形ABCD.其中AB=3百米,AD=百米,且△BCD是以D為直角頂點的等腰直角三角形.擬修建兩條小路AC,BD(路的寬度忽略不計),設∠BAD=
,
(
,
).
(1)當cos=
時,求小路AC的長度;
(2)當草坪ABCD的面積最大時,求此時小路BD的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線
的方程為
,曲線
:
(
為參數,
),在以原點
為極點,
軸正半軸為極軸的極坐標系中,曲線
:
.
(1)求曲線的普通方程和曲線
的直角坐標方程;
(2)若直線與曲線
有公共點,且直線
與曲線
的交點
恰好在曲線
與
軸圍成的區域(不含邊界)內,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠為提高生產效率,開展技術創新活動,提出了完成某項生產任務的兩種新的生產方式.為比較兩種生產方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產方式,第二組工人用第二種生產方式.根據工人完成生產任務的工作時間(單位:min)繪制了如下莖葉圖:
第一種生產方式 | 第二種生產方式 | |||||||||||||||||||
8 | 6 | 5 | 5 | 6 | 8 | 9 | ||||||||||||||
9 | 7 | 6 | 2 | 7 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 6 | 8 | ||||||
9 | 8 | 7 | 7 | 6 | 5 | 4 | 3 | 3 | 2 | 8 | 1 | 4 | 4 | 5 | ||||||
2 | 1 | 1 | 0 | 0 | 9 | 0 |
(1)根據莖葉圖判斷哪種生產方式的效率更高?并說明理由;
(2)求40名工人完成生產任務所需時間的中位數m,并將完成生產任務所需時間超過m和不超過m的工人數填入下面的列聯表:
超過m | 不超過m | 總計 | |
第一種生產方式 | |||
第二種生產方式 | |||
總計 |
(3)根據(2)中的列表,能否有99%的把握認為兩種生產方式的效率有差異?
附:,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】北京市政府為做好會議接待服務工作,對可能遭受污染的某海產品在進入餐飲區前必須進行兩輪檢測,只有兩輪都合格才能進行銷售,否則不能銷售.已知該海產品第一輪檢測不合格的概率為
,第二輪檢測不合格的概率為
,兩輪檢測是否合格相互沒有影響.
(1)求該海產品不能銷售的概率.
(2)如果該海產品可以銷售,則每件產品可獲利40元;如果該海產品不能銷售,則每件產品虧損80元(即獲利-80元).已知一箱中有該海產品4件,記一箱該海產品獲利元,求
的分布列,并求出數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班隨機抽查了名學生的數學成績,分數制成如圖的莖葉圖,其中
組學生每天學習數學時間不足
個小時,
組學生每天學習數學時間達到一個小時,學校規定
分及
分以上記為優秀,
分及
分以上記為達標,
分以下記為未達標.
(1)根據莖葉圖完成下面的列聯表:
達標 | 未達標 | 總計 | |
| |||
| |||
總計 |
(2)判斷是否有的把握認為“數學成績達標與否”與“每天學習數學時間能否達到一小時”有關.
參考公式與臨界值表:,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某外語學校的一個社團有7名同學,其中2人只會法語,2人只會英語,3人既會法語又會英語,現選派3人到法國的學校交流訪問.求:
(1)在選派的3人中恰有2人會法語的概率;
(2)求在選派的3人中既會法語又會英語的人數的分布列.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com