【題目】已知圓經(jīng)過兩點(diǎn)
,且圓心在直線
上,直線
的方程為
。
(1)求圓的方程;
(2)證明:直線與圓
恒相交;
(3)求直線被圓
截得的弦長的取值范圍。
【答案】(1);(2)證明見解析;(3)
【解析】
(1)設(shè)圓的一般方程,將PQ點(diǎn)代入方程,將圓心
代入直線
,解方程組,即可。
(2)求出直線:
過定點(diǎn)
,說明點(diǎn)M在圓內(nèi),即可。
(3)當(dāng)直線過圓心時弦長有最大值10,
當(dāng)直線與過圓心與定點(diǎn)的直線垂直時有最小值
。
(1)設(shè)圓的方程為
,
由條件得,解得
∴圓的方程為
;
(2)由,得
,
令,
得,即直線
過定點(diǎn)
,
由,知點(diǎn)
在圓內(nèi),
∴直線與圓
恒相交。
(3)圓心,半徑為5,由題意知,當(dāng)點(diǎn)
滿足
垂直于直線
時,弦長最短,
直線被圓心
截得的最短弦長為
,
直徑最長10,弦長的取值范圍為。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,其左、右焦點(diǎn)分別為
,點(diǎn)
是坐標(biāo)平面內(nèi)一點(diǎn),且
,
(
為坐標(biāo)原點(diǎn)).
(1)求橢圓的方程;
(2)過點(diǎn)且斜率為
的動直線
交橢圓于
兩點(diǎn),在
軸上是否存在定點(diǎn)
,使以
為直徑的圓恒過該點(diǎn)?若存在,求出點(diǎn)
的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直角坐標(biāo)系xoy中,曲線:
(
:y=kx (x
),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立坐標(biāo)系,曲線
的極坐標(biāo)方程為:
.
(1)求的直角坐標(biāo)方程。
(2)曲線
交于點(diǎn)B,求A、B兩點(diǎn)的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確命題的個數(shù)是
(1)對分類變量與
的隨機(jī)變量
的觀測值
來說,
越小,判斷“
與
有關(guān)系”的把握越大;
(2)若將一組樣本數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,則樣本的方差不變;
(3)在殘差圖,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高;
(4)設(shè)隨機(jī)變量服從正態(tài)分布
;
若,則
( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
,
(1)當(dāng)時,求
的最大值和最小值;
(2)求實(shí)數(shù)的取值范圍,使
在區(qū)間
上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四組函數(shù)中,f (x)與g (x)表示同一個函數(shù)的是( )
A.f (x) = |x|,g(x) =B.f (x) = 2x,g (x) =
C.f (x) = x,g (x) =D.f (x) = x,g (x) =
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年2月9-25日,第23屆冬奧會在韓國平昌舉行.4年后,第24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學(xué)在平昌冬奧會開幕后的第二天,從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對是否收看平昌冬奧會開幕式情況進(jìn)行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:
收看 | 沒收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(Ⅰ)根據(jù)上表說明,能否有的把握認(rèn)為,收看開幕式與性別有關(guān)?
(Ⅱ)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學(xué)生中,采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會志愿者宣傳活動.
(ⅰ)問男、女學(xué)生各選取多少人?
(ⅱ)若從這8人中隨機(jī)選取2人到校廣播站開展冬奧會及冰雪項(xiàng)目宣傳介紹,求恰好選到一名男生一名女生的概率P.
附:,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,
,
,
,
,
為
上的動點(diǎn).
(Ⅰ)當(dāng)為
的中點(diǎn)時,在棱
上是否存在點(diǎn)
,使得
?說明理由;
(Ⅱ)的面積最小時,求三棱錐
的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com