【題目】對于四面體ABCD,給出下列四個命題:
①若AB=AC,BD=CD,則BC⊥AD; ②若AB=CD,AC=BD,則BC⊥AD;
③若AB⊥AC,BD⊥CD,則BC⊥AD;④若AB⊥CD,AC⊥BD,則BC⊥AD;
其中正確的命題的序號是( )
A.①②B.②③C.②④D.①④
科目:高中數學 來源: 題型:
【題目】在四棱錐PABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,
∠ABC=∠DCB=60,E是PC上一點.
(Ⅰ)證明:平面EAB⊥平面PAC;
(Ⅱ)若△PAC是正三角形,且E是PC中點,求三棱錐AEBC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C:x2=6y與直線l:y=kx+3交于M,N兩點.
(1)設M,N到y(tǒng)軸的距離分別為d1,d2,證明:d1d2為定值.
(2)y軸上是否存在點P,使得當k變動時,總有∠OPM=∠OPN?若存在,求以線段OP為直徑的圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】高一年級某個班分成8個小組,利用假期參加社會公益服務活動每個小組必須全員參加
,參加活動的次數記錄如下:
組別 | ||||||||
參加活動次數 | 3 | 2 | 4 | 3 | 2 | 4 | 1 | 3 |
Ⅰ
從這8個小組中隨機選出2個小組在全校進行活動匯報
求“選出的2個小組參加社會公益服務活動次數相等”的概率;
Ⅱ
記每個小組參加社會公益服務活動的次數為X.
求X的分布列和數學期望EX;
至
幾小組每組有4名同學,
小組有5名同學記“該班學生參加社會公益服務活動的平均次數”為
,寫出
與EX的大小關系
結論不要求證明
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (a>b>0)的一個頂點為A(2,0),離心率為
.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當△AMN的面積為時,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠家擬在2020年舉行促銷活動,經調查測算,某產品的年銷售量(即該廠的年產量)萬件與年促銷費用
萬元,滿足
(
為常數),如果不搞促銷活動,則該產品的年銷售量只能是1萬件,已知2020年生產該產品的固定投入為8萬元,每生產1萬件,該產品需要再投入16萬元,廠家將每件產品的銷售價格定為每件產品年平均成本的1.5倍(產品成本包括固定投入和再投入兩部分資金).
(1)將2020年該產品的利潤(萬元)表示為年促銷費用
(萬元)的函數;
(2)該廠家2020年的促銷費用投入多少萬元時,廠家的利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面給出四種說法:
①設、
、
分別表示數據15、17、14、10、15、17、17、16、14、12的平均數、中位數、眾數,則
;
②在線性回歸模型中,相關系數的絕對值越接近于1,表示兩個變量的相關性越強;
③繪制頻率分布直方圖時,各小長方形的面積等于相應各組的組距;
④線性回歸直線不一定過樣本中心點.
其中正確說法的序號是______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com