【題目】在國家“大眾創業,萬眾創新”戰略下,某企業決定加大對某種產品的研發投入,已知研發投入 (十萬元)與利潤
(百萬元)之間有如下對應數據:
2 | 3 | 4 | 5 | 6 | |
2 | 4 | 5 | 6 | 7 |
若由資料知對
呈線性相關關系。試求:
(1)線性回歸方程;
(2)估計時,利潤是多少?
附:利用“最小二乘法”計算a,b的值時,可根據以下公式:
科目:高中數學 來源: 題型:
【題目】若無窮數列滿足:
,對于
,都有
(其中
為常數),則稱
具有性質“
”.
(Ⅰ)若具有性質“
”,且
,
,
,求
;
(Ⅱ)若無窮數列是等差數列,無窮數列
是公比為正數的等比數列,
,
,
,判斷
是否具有性質“
”,并說明理由;
(Ⅲ)設既具有性質“
”,又具有性質“
”,其中
,
,
互質,求證:
具有性質“
”.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“城中觀海”是近年來國內很多大中型城市內澇所致的現象,究其原因,除天氣因素、城市規劃等原因外,城市垃圾雜物也是造成內澇的一個重要原因.暴雨會沖刷城市的垃圾雜物一起進入下水道,據統計,在不考慮其它因素的條件下,某段下水道的排水量V(單位:立方米/小時)是雜物垃圾密度x(單位:千克/立方米)的函數.當下水道的垃圾雜物密度達到2千克/立方米時,會造成堵塞,此時排水量為0;當垃圾雜物密度不超過0.2千克/立方米時,排水量是90立方米/小時;研究表明,0.2≤x≤2時,排水量V是垃圾雜物密度x的一次函數.
(1)當0≤x≤2時,求函數V(x)的表達式;
(2)當垃圾雜物密度x為多大時,垃圾雜物量(單位時間內通過某段下水道的垃圾雜物量,單位:千克/小時)f(x)=xV(x)可以達到最大,求出這個最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四名同學根據各自的樣本數據研究變量之間的相關關系,并求得回歸直線方程,分別得到以下四個結論:( )
①與
負相關且
. ②
與
負相關且
③與
正相關且
④
與
正相關且
其中正確的結論的序號是( )
A. ①② B. ②③ C. ①④ D. ③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個結論中:
(1)如果兩個函數都是增函數,那么這兩個函數的積運算所得函數為增函數;
(2)奇函數f(x)在[0,+∞)上是增函數,則f(x)在R上為增函數;
(3)既是奇函數又是偶函數的函數只有一個;
(4)若函數f(x)的最小值是a,最大值是b,則f(x)值域為[a,b].
其中正確結論的序號為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】輪船從某港口將一些物品送到正航行的輪船
上,在輪船
出發時,輪船
位于港口
北偏西
且與
相距20海里的
處,并正以30海里的航速沿正東方向勻速行駛,假設輪船
沿直線方向以
海里/小時的航速勻速行駛,經過
小時與輪船
相遇.
(1)若使相遇時輪船航距最短,則輪船
的航行速度大小應為多少?
(2)假設輪船的最高航速只能達到30海里/小時,則輪船
以多大速度及什么航行方向才能在最短時間與輪船
相遇,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn,且Sn=2n2+n,n∈N,數列{bn}滿足an=4log2bn+3,n∈N.
(1)求an,bn;
(2)求數列{anbn}的前n項和Tn.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com