【題目】已知f(x)=lnx+a(1-x),問:(1)討論f(x) 的單調性;(2)當 f(x)有最大值,且最大值大于2a-2 時,求a的取值范圍.
(1)(I)討論f(x) 的單調性;
(2)(II)當 f(x)有最大值,且最大值大于2a-2 時,求a的取值范圍.
【答案】
(1)
f(x)在(0,)單調遞增,在(
,+
)單調遞減
(2)
(0,1)
【解析】
(I)a0,f(x)在(0,+
)是單調遞增
a0.f(x)在(0,
)單調遞增,在(
, +
)單調遞減
f(x)的定義域為(0,+),f’(x)=
-a,若a
0,則f’(x)
0,f(x)在(0,+
)是單調遞增
若a0,則當x
(0,
)時,f’(x)
0,
當x(
, +
)時,f’(x)
0
所以f(x)在(0,)單調遞增,在(
, +
)單調遞減。
(II).由(I)知,當a0時,f(x)在(0,+
)無最大值
當a0.f(x)在x=
取得最大值,最大值為f(
)=ln(
)+a(1-
)=-lna+a-1
因此f()
2a-2
lna+a-1
0
令g(a)=lna+a-1,則g(a)在(0,+)是增函數,g(1)=0,于是,當0
a
1時g(a)
0,當a
1時,g(a)
0,因此a的取值范圍是(0,1)。
【考點精析】通過靈活運用函數單調性的判斷方法,掌握單調性的判定法:①設x1,x2是所研究區間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較即可以解答此題.
科目:高中數學 來源: 題型:
【題目】如圖,已知菱形ABEF所在的平面與△ABC所在的平面相互垂直,AB=4,BC= ,BC⊥BE,∠ABE=
.
(1)求證:BC⊥平面ABEF;
(2)求平面ACF與平面BCE所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知D= ,給出下列四個命題:
P1:(x,y)∈D,x+y+1≥0;
P2:(x,y)∈D,2x﹣y+2≤0;
P3:(x,y)∈D, ≤﹣4;
P4:(x,y)∈D,x2+y2≤2.
其中真命題的是( )
A.P1 , P2
B.P2 , P3
C.P2 , P4
D.P3 , P4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a,b,c分別是△ABC的內角A,B,C所對的邊,a=2bcosB,b≠c.
(1)證明:A=2B;
(2)若a2+c2=b2+2acsinC,求A.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,長方形的邊AB=2,BC=1,O是AB的中點,點P沿著邊BC,CD與DA運動,記
BOP=x,將動點P到A,B兩點距離之和表示為x的函數f(x),則圖像大致為()
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,長方形的邊AB=2,BC=1,O是AB的中點,點P沿著邊BC,CD與DA運動,記
BOP=x,將動點P到A,B兩點距離之和表示為x的函數f(x),則圖像大致為()
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖O是等腰三角形ABC內一點,圓O與△ABC的底邊BC交于M,N兩點,與底邊上的高交于點G,且與AB,AC分別相切于E,F兩點.
(1)(I)證明EF//BC
(2)(II)若AG等于圓O半徑,且AE=MN=2,求四邊形EBCF的面積
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·新課標I卷)Sn為數列{an}的前n項和.已知an>0,an2+2an=4Sn+3,
(1)求{an}的通項公式;
(2)設bn=,求數列{bn}的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前n項的和記為Sn.如果a4=-12,a8=-4.
(1)求數列{an}的通項公式;
(2)求Sn的最小值及其相應的n的值;
(3)從數列{an}中依次取出a1,a2,a4,a8,…,,…,構成一個新的數列{bn},求{bn}的前n項和
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com