日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

設曲線y=和曲線y=在它們的交點處的兩切線的夾角為α,求tanα的值.

答案:
解析:

  解:聯立兩曲線方程解得兩曲線交點為(1,1).

  設兩曲線在交點處的切線斜率分別為k1、k2,則

  k1=(|x=1|x=1=-2,

  k2=(|x=1=-1.

  由兩直線夾角公式:tanα

  思路解析:要求兩切線的夾角,關鍵是確定在兩曲線交點處的切線的斜率.根據導數的幾何意義,只需先求出兩曲線在交點處的導數,再應用兩直線夾角公式求出夾角即可.


練習冊系列答案
相關習題

科目:高中數學 來源:全優設計選修數學-1-1蘇教版 蘇教版 題型:044

設曲線y=和曲線y=在它們的交點處的兩切線的夾角為α,求tanα的值.

查看答案和解析>>

科目:高中數學 來源:全優設計選修數學-2-2蘇教版 蘇教版 題型:044

設曲線y=和曲線y=在它們的交點處的兩切線的夾角為α,求α的值.

查看答案和解析>>

科目:高中數學 來源:選修設計同步數學人教A(2-2) 人教版 題型:044

設曲線y和曲線y在它們的交點處兩切線的夾角為α,求tanα的值.

查看答案和解析>>

科目:高中數學 來源:2013屆黑龍江虎林高中高二下學期期中理科數學試卷(解析版) 題型:解答題

已知函數f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數a和b的值;

(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,

即f(x1)+x1≥f(x2)+x2,結合構造函數和導數的知識來解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數,

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品高清在线观看 | 日韩三级一区二区 | 国产午夜一区二区 | 五月综合色 | 国产专区在线播放 | 青青草国产成人av片免费 | 三级视频在线观看 | 官场少妇尤物雪白高耸 | 成人一区二区在线 | 天天干天天操天天爽 | 国产欧美一区二区 | 国产aⅴ爽av久久久久成人 | 久久在线免费观看 | 国产福利在线视频 | 一级国产片| 欧美黑人性猛交 | 免费高清av | 日韩偷拍自拍 | 日韩视频在线观看 | 亚洲精品www久久久久久广东 | 金银在线| 一区二区三区亚洲 | av日韩在线播放 | 黄色草逼视频 | 久久精品一区二区三区四区五区 | a级片在线观看 | 神马午夜久久 | 色吧五月天| 国 产 黄 色 大 片 | 欧美日韩免费在线观看 | 欧美日韩中文字幕在线观看 | 久草精品视频在线看网站免费 | 日本精品免费 | 国产精品成人在线观看 | 国产精品99久久久久久久久久久久 | 欧美精品一级片 | 四虎影视在线播放 | 日韩城人免费 | 在线视频黄| 中文精品一区 | 国产精品看片 |