分析 先設M(x,y),A(a,0),B(0,b),根據$\overrightarrow{AM}=\frac{2}{3}\overrightarrow{MB}$得x,y的方程,最后根據a2+b2=25得出x,y的關系即M的軌跡方程.
解答 解:設M(x,y),A(a,0),B(0,b),
由$\overrightarrow{AM}=\frac{2}{3}\overrightarrow{MB}$得(x-a,y)=$\frac{2}{3}$(-x,b-y),
∴$\left\{\begin{array}{l}{x-a=-\frac{2}{3}x}\\{y=\frac{2}{3}(b-y)}\end{array}\right.$,解得x=$\frac{3}{5}a$,y=$\frac{2}{5}$b
∵|AB|=5
∴a2+b2=25
∴$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1.
故答案為$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1.
點評 本題主要考查了橢圓的標準方程.本題主要靈活利用了向量的關系進行解題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com