某造船公司年造船量是20艘,已知造船x艘的產值函數為R(x)=3700x+45x2-10x3(單位:萬元),成本函數為C(x)=460x+5000(單位:萬元),又在經濟學中,函數f(x)的邊際函數Mf(x)定義為Mf(x)=f(x+1)-f(x).
(1)求利潤函數P(x)及邊際利潤函數MP(x);(提示:利潤=產值-成本)
(2)問年造船量安排多少艘時,可使公司造船的年利潤最大?
(1)P(x)= -10x3+45x2+3 240x-5 000(x∈N*,且1≤x≤20);
MP(x)=P(x+1)-P(x)=-30x2+60x+3 275 (x∈N*,且1≤x≤19)
(2)x=12時,P(x)有最大值
解析試題分析:解:(1)P(x)=R(x)-C(x)=-10x3+45x2+3 240x-5 000(x∈N*,且1≤x≤20);
MP(x)=P(x+1)-P(x)=-30x2+60x+3 275 (x∈N*,且1≤x≤19). 4分
(2)=-30x2+90x+3 240=-30(x-12)(x+9),
∵x>0,∴=0時,x=12, 8分
∴當0<x<12時,>0,當x>12時,
<0,
∴x=12時,P(x)有最大值. 11分
即年造船量安排12艘時,可使公司造船的年利潤最大. 12分
考點:函數的運用
點評:主要是考查了函數模型的運用,分析問題和解決問題能力的運用,屬于中檔題。
科目:高中數學 來源: 題型:解答題
設函數.
(1) 試問函數f(x)能否在x= 時取得極值?說明理由;
(2) 若a= ,當x∈[
,4]時,函數f(x)與g(x)的圖像有兩個公共點,求c的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
若二次函數f(x)=ax2+bx+c(a≠0)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在區間[-1,1]上,不等式f(x)>2x+m恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某工廠生產一種產品的原材料費為每件40元,若用x表示該廠生產這種產品的總件數,則電力與機器保養等費用為每件0.05x元,又該廠職工工資固定支出12500元。
(1)把每件產品的成本費P(x)(元)表示成產品件數x的函數,并求每件產品的最低成本費;
(2)如果該廠生產的這種產品的數量x不超過3000件,且產品能全部銷售,根據市場調查:每件產品的銷售價Q(x)與產品件數x有如下關系:,試問生產多少件產品,總利潤最高?(總利潤=總銷售額-總的成本)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
將邊長為米的一塊正方形鐵皮的四角各截去一個大小相同的小正方形,然后將四邊折起做成一個無蓋的方盒.欲使所得的方盒有最大容積,截去的小正方形的邊長應為多少米?方盒的最大容積為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設函數,
是定義域為R上的奇函數.
(1)求的值,并證明當
時,函數
是R上的增函數;
(2)已知,函數
,
,求
的值域;
(3)若,試問是否存在正整數
,使得
對
恒成立?若存在,請求出所有的正整數
;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com