(本小題滿分16分)設(shè),函數(shù)
.
(Ⅰ)當(dāng)時(shí),求函數(shù)
的單調(diào)增區(qū)間;
(Ⅱ)若時(shí),不等式
恒成立,實(shí)數(shù)
的取值范圍..
【解】:(1)當(dāng)時(shí),
…………(2分)
當(dāng)時(shí),
,
在
內(nèi)單調(diào)遞增;
當(dāng)時(shí),
恒成立,故
在
內(nèi)單調(diào)遞增;
的單調(diào)增區(qū)間為
。 …………(6分)
(2)①當(dāng)時(shí),
,
,
恒成立,
在
上增函數(shù)。
故當(dāng)時(shí),
。 …………8分)
②當(dāng)時(shí),
,
(Ⅰ)當(dāng),即
時(shí),
在
時(shí)為正數(shù),所以
在區(qū)間
上為增函數(shù)。故當(dāng)
時(shí),
,且此時(shí)
…………(10分)
(Ⅱ)當(dāng),即
時(shí),
在
時(shí)為負(fù)數(shù),在
時(shí)為正數(shù),所以
在區(qū)間
上為減函數(shù),在
上為增函數(shù)。故當(dāng)
時(shí),
,且此時(shí)
。 …………(12分)
(Ⅲ)當(dāng),即
時(shí),
在
進(jìn)為負(fù)數(shù),所以
在區(qū)間
上為減函數(shù),故當(dāng)
時(shí),
。 …………(14分)
所以函數(shù)的最小值為
。
由條件得此時(shí)
;或
,此時(shí)
;或
,此時(shí)無(wú)解。
綜上,。 …………(16分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2010江蘇卷)18、(本小題滿分16分)
在平面直角坐標(biāo)系
中,如圖,已知橢圓
的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F。設(shè)過(guò)點(diǎn)T(
)的直線TA、TB與橢圓分別交于點(diǎn)M
、
,其中m>0,
。
(1)設(shè)動(dòng)點(diǎn)P滿足,求點(diǎn)P的軌跡;
(2)設(shè),求點(diǎn)T的坐標(biāo);
(3)設(shè),求證:直線MN必過(guò)x軸上的一定點(diǎn)(其坐標(biāo)與m無(wú)關(guān))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年泰州中學(xué)高一下學(xué)期期末測(cè)試數(shù)學(xué) 題型:解答題
(本小題滿分16分)
函數(shù),
(
),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,對(duì)任意
時(shí),
恒成立,求實(shí)數(shù)
的范圍;
(Ⅲ)如果,當(dāng)“
對(duì)任意
恒成立”與“
在
內(nèi)必有解”同時(shí)成立時(shí),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆江蘇大豐新豐中學(xué)高二上期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分16分) 本題請(qǐng)注意換算單位
某開發(fā)商用9000萬(wàn)元在市區(qū)購(gòu)買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費(fèi)用為每平方米4000元,從第二層開始,每一層的建筑費(fèi)用比其下面一層每平方米增加100元。
(1)若該寫字樓共x層,總開發(fā)費(fèi)用為y萬(wàn)元,求函數(shù)y=f(x)的表達(dá)式;
(總開發(fā)費(fèi)用=總建筑費(fèi)用+購(gòu)地費(fèi)用)
(2)要使整幢寫字樓每平方米開發(fā)費(fèi)用最低,該寫字樓應(yīng)建為多少層?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆安徽省蚌埠市高二下學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分16分)設(shè)命題:方程
無(wú)實(shí)數(shù)根;
命題
:函數(shù)
的值域是
.如果命題
為真命題,
為假命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高一第三階段檢測(cè)數(shù)學(xué)卷 題型:解答題
(本小題滿分16分)
已知函數(shù)f(x)=為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為
(Ⅰ)求f()的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)延長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com