已知橢圓的左、右焦點分別為
,離心率為
,P是橢圓上一點,且
面積的最大值等于2.
(1)求橢圓的方程;
(2)過點M(0,2)作直線與直線
垂直,試判斷直線
與橢圓的位置關系5
(3)直線y=2上是否存在點Q,使得從該點向橢圓所引的兩條切線相互垂直?若存在,求點Q的坐標;若不存在,說明理由。
(1) ;(2)相切;(3) 存在,
.
解析試題分析:(1)通過橢圓性質列出的方程,其中離心率
,分析圖形知道當點P在短軸端點時,
面積取得最大值,所以
,橢圓中
,從而建立關于
的方程,解出
;即得到橢圓的標準方程(2)列出過定點直線的方程,其與直線
垂直,求出其斜率,聯立橢圓方程,得出
,寫出關系;(3)對于存在性的問題,要先假設存在,先設存在這樣的點
,
,結合圖形知道要先討論
,當
時,明顯切線不垂直,當
時,先設切線
,與橢圓方程聯立,利用
,得出關于斜率
的方程,利用兩根之積公式
,解出
點坐標.即
值.此題為較難題型,分類討論時要全面.
試題解析:(1)因為點在橢圓上,所以
因此當時,
面積最大,且最大值為
又離心率為即
由于,解得
所求橢圓方程為.
(2)由(1)知,
直線
的斜率等于
,直線
的方程
,
由消去
,整理得
,
直線
與橢圓相切.
(3)假設直線上存在點
滿足題意,設
,顯然當
時,從
點所引的兩條切線不垂直.
當時,設過點
向橢圓所引的切線
的斜率為
,則
的方程為
由消去
,整理得:
所以, *
設兩條切線的斜率分別為,顯然,
是方程的兩根,故:
解得:,點
坐標為
或
因此,直線上存在兩點
和
滿足題意.
考點:1.橢圓的性質與標準方程;2.直線垂直的判斷;3.存在性問題的求解;4.直線與橢圓的位置關系的判斷.
科目:高中數學 來源: 題型:解答題
己知橢圓C:(a>b>0)的右焦點為F(1,0),點A(2,0)在橢圓C上,過F點的直線
與橢圓C交于不同兩點
.
(1)求橢圓C的方程;
(2)設直線斜率為1,求線段
的長;
(3)設線段的垂直平分線交
軸于點P(0,y0),求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓,若橢圓
的右頂點為圓
的圓心,離心率為
.
(1)求橢圓C的方程;
(2)若存在直線,使得直線
與橢圓
分別交于
兩點,與圓
分別交于
兩點,點
在線段
上,且
,求圓
的半徑
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,是橢圓
的左、右頂點,橢圓
的離心率為
,右準線
的方程為
.
(1)求橢圓方程;
(2)設是橢圓
上異于
的一點,直線
交
于點
,以
為直徑的圓記為
. ①若
恰好是橢圓
的上頂點,求
截直線
所得的弦長;
②設與直線
交于點
,試證明:直線
與
軸的交點
為定點,并求該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,橢圓的的一個頂點和兩個焦點構成的三角形的面積為4,
(1)求橢圓C的方程;
(2)已知直線與橢圓C交于A, B兩點,若點M(
, 0),求證
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知線段MN的兩個端點M、N分別在軸、
軸上滑動,且
,點P在線段MN上,滿足
,記點P的軌跡為曲線W.
(1)求曲線W的方程,并討論W的形狀與的值的關系;
(2)當時,設A、B是曲線W與
軸、
軸的正半軸的交點,過原點的直線與曲線W交于C、D兩點,其中C在第一象限,求四邊形ACBD面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:
的離心率為
,右焦點為
,右頂點
在圓
:
上.
(Ⅰ)求橢圓和圓
的方程;
(Ⅱ)已知過點的直線
與橢圓
交于另一點
,與圓
交于另一點
.請判斷是否存在斜率不為0的直線
,使點
恰好為線段
的中點,若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com