日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
若a>0,a≠1,x>y>0(n∈N+)則下列各式成立的有   
①(logax)n=nlogax②(logax)n=logaxn
【答案】分析:根據已知條件,結合對數的性質,逐個對式子進行判斷證明,可得到答案,也可利用特值法,代入進行判斷.
解答:解:由對數的運算性質:
nlogax=logaxn≠(logax)n,故①②⑤⑥⑦錯誤;
=x-1,故③正確;
同理⑧正確;
由換底公式易得:④錯誤;
故答案為:③⑧
點評:解決本題的關鍵是熟練掌握對數的運算性質:如果a>0,且a≠1,M>0,N>0,那么:①loga(M•N)=logaM+logaN;②loga)=logaM-logaN;③logaMn=n•logaM(n∈R);
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

有下列命題:
①函數y=f (-x+2)與y=f (x-2)的圖象關于y軸對稱;
②若函數f(x)=ex,則?x1,x2∈R,都有f(
x1+x2
2
)≤
f(x1)+f(x2)
2
;
③若函數f(x)=loga|x|(a>0,a≠1)在(0,+∞)上單調遞增,則f(-2)>f(a+1);
④若函數f(x+2010)=x2-2x-1(x∈R),則函數f(x)的最小值為-2.
其中真命題的序號是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

有下列命題:
①函數y=f (-x+2)與y=f (x-2)的圖象關于y軸對稱;
②若函數f(x)=ex,則?x1,x2∈R,都有f(
x1+x2
2
)≤
f(x1)+f(x2)
2

③若函數f(x)=loga|x|(a>0,a≠1)在(0,+∞)上單調遞增,則f(-2)>f(a+1);
④若函數f(x+2010)=x2-2x-1 (x∈R),則函數f(x)的最小值為-2.
其中真命題的序號是
②④
②④

查看答案和解析>>

科目:高中數學 來源:必修一教案數學蘇教版 蘇教版 題型:013

若a>0且a≠1,x∈R,y∈R且xy>0,則下列各式中錯誤的是

logax2=2logax

logax2=2loga|x|

logaxy=logax+logay

logaxy=loga|x|+loga|y

[  ]

A.②④

B.①③

C.①④

D.②③

查看答案和解析>>

科目:高中數學 來源:導學大課堂必修一數學蘇教版 蘇教版 題型:013

若a>0,a≠1,x>0,y>0,x>y,下列式子中正確的個數為

①logax+logay=loga(x+y)

②logax-logay=loga(x-y)

③loga=logax÷logay

④loga(x·y)=logax·logay

[  ]
A.

0

B.

1

C.

2

D.

3

查看答案和解析>>

科目:高中數學 來源:中學教材全解 高中數學 必修1(人教A版) 人教A版 題型:013

若a>0,a≠1,x>0,y>0,x>y,下列式子中正確的個數有

①logax·logay=loga(x+y);

②logax-logay=loga(x-y);

③loga=logax÷logay;

④loga(xy)=logax·logay.

[  ]

A.0

B.1

C.2

D.3

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品亚洲欧美日韩一区在线 | 一区免费 | wwwjizz日本 | 亚洲1级片| 日韩欧美一区二区三区久久婷婷 | 99精品热播 | 欧美日韩综合视频 | 91精品国产自产精品男人的天堂 | 国产一区二区三区在线 | 成人精品一区二区三区中文字幕 | 亚洲精品成人 | 久久久精品高清 | 国产成人精品免高潮在线观看 | 国产综合视频在线播放 | 亚洲乱码一区二区 | 精品国产乱码久久久久久88av | 一级在线毛片 | 亚洲永久免费 | 日韩欧美中文在线 | 精品国产18久久久久久二百 | 在线播放一区 | 色丁香在线 | 国产精品视频播放 | 亚洲国产精品麻豆 | 日日综合 | 久久精品一区二区三区四区 | a毛片在线免费观看 | 在线日韩欧美 | 国产精品成人一区二区三区夜夜夜 | 亚洲日韩成人 | 精品福利在线 | 国产一区二区电影 | 国产区精品在线 | 羞羞视频网站免费看 | jvid美女成人福利视频 | 丰满少妇久久久久久久 | 免费在线亚洲 | 99动漫 | 99福利视频 | 亚洲天堂精品在线观看 | 日韩在线一区二区 |