日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
下列命題中,真命題的是

①函數y=cos(2x+
π
2
)+1
的圖象的一個對稱中心是(-
π
2
,0)
;
②要得到函數y=cos(-
π
3
+2x)
的圖象,只需將函數y=sin2x的圖象向左平移
π
12
個單位;
α=
π
4
+2kπ
是tanα=1的充要條件;
④函數y=sinx-
3
cosx  x∈[-π,0]
的單調遞增區間是[-
5
6
π, -
π
6
]
分析:函數y=cos(2x+
π
2
)+1
的圖象的對稱中心滿足:
2x+
π
2
=kπ+
π
2
,k∈Z
y=1
;將函數y=sin2x的圖象向左平移
π
12
個單位,得到y=sin(2x+
π
6
)=cos(
π
3
-2x
)=cos(-
π
3
+2x
)的圖象;α=
π
4
+2kπ
⇒tanα=1,tanα=1⇒α=
π
4
+kπ
,或α=
4
+kπ,k∈Z
,故α=
π
4
+2kπ
是tanα=1的充分不必要條件;y=sinx-
3
cosx
=2sin(x-
π
3
),x∈[-π,0]的增區間是[-
π
6
,0].
解答:解:函數y=cos(2x+
π
2
)+1
的圖象的對稱中心滿足:
2x+
π
2
=kπ+
π
2
,k∈Z
y=1
,故A不成立;
將函數y=sin2x的圖象向左平移
π
12
個單位,
得到y=sin(2x+
π
6
)=cos(
π
3
-2x
)=cos(-
π
3
+2x
)的圖象,故②成立;
α=
π
4
+2kπ
⇒tanα=1,tanα=1⇒α=
π
4
+kπ
,或α=
4
+kπ,k∈Z

α=
π
4
+2kπ
是tanα=1的充分不必要條件,故③不成立;
y=sinx-
3
cosx
=2sin(x-
π
3
),x∈[-π,0]的增區間是[-
π
6
,0],故D不正確.
故答案為:②.
點評:本題考查命題的真假判斷及其應用,解題時要認真審題,注意三角函數的性質的靈活運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設m,n是兩條不同的直線,α,β,γ是三個不同的平面,給出下列命題:
①若m?β,α⊥β,則m⊥α;②若m∥α,m⊥β,則α⊥β;
③若α⊥β,α⊥γ,則β⊥γ;④若α∩γ=m,β∩γ=n,m∥n,則α∥β.
上面命題中,真命題的序號是
.       (寫出所有真命題的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

下列命題中是真命題的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

下列命題中為真命題的是(    )

①底面是正多邊形而且側棱長與底面邊長相等的棱錐是正多面體;②正多面體的面不是三角形就是正方形;③若長方體的各側面都是正方形時,它就是正多面體;④正三棱錐是正四面體.

A.①②             B.③               C.②③              D.④

查看答案和解析>>

科目:高中數學 來源: 題型:

下列命題中為真命題的是                                               (    )

A.平行直線的傾斜角相等              B.平行直線的斜率相等

C.互相垂直的兩直線的傾斜角互補      D.互相垂直的兩直線的斜率互為相反

查看答案和解析>>

科目:高中數學 來源:2015屆河南周口中英文學校高二上學期第三次月考數學試卷(解析版) 題型:選擇題

下列命題中為真命題的是 (   )

A.命題“若,則”的逆命題

B.命題“若,則”的否命題

C.命題“若,則”的否命題

D.命題“若,則”的逆否命題

 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 一区在线播放 | 成人黄色大片 | 精品久久久久久一区二区里番 | 深夜福利av| 极品av在线 | 欧美一级色 | 草草网| 天天干夜夜骑 | 日韩综合在线观看 | 欧美mv日韩mv国产 | 亚洲激情偷拍 | 国产盗摄一区二区 | 欧美精品日韩 | 欧美视频免费看 | 国产一级在线 | 久久亚洲欧美 | 亚洲另类av | 欧美成人免费 | 免费三级网站 | 久久久天堂国产精品女人 | 特级黄色片 | 免费观看黄色av | 天天躁日日躁狠狠躁 | 69福利视频 | 成人午夜视频在线观看 | 日韩av在线免费播放 | 国产福利av | 精品欧美在线 | 日本天堂网 | 8x8ⅹ国产精品一区二区 | 免费黄色一级视频 | 国产一级网站 | 美女一级片 | 可以看的毛片 | 在线国产91| a毛片大片| 免费看黄色录像 | 国精产品99永久一区一区 | 日本中文在线观看 | 四虎三级 | 亚洲精品一二三区 |