設(shè)數(shù)列的各項(xiàng)都是正數(shù),且對(duì)任意
,都有
,其中
為數(shù)列
的前
項(xiàng)和。
(1)求證數(shù)列是等差數(shù)列;
(2)若數(shù)列的前
項(xiàng)和為Tn,求Tn。
(1)證明詳見(jiàn)解析;(2)
解析試題分析:(1)利用(
)和已知等式
可得
,由于
,
.然后再求n=1時(shí),a1的值即可求證;
(2)利用(1)的結(jié)論,首先求出,然后在求出
,這樣就可得到
=
,最后在利用裂項(xiàng)法求數(shù)列
的前n項(xiàng)和.
試題解析:解:(1)∵,當(dāng)
時(shí),
,
兩式相減,得,即
,又
,∴
. 4分
當(dāng)時(shí),
,∴
,又
,∴
.
所以,數(shù)列是以3為首項(xiàng),2為公差的等差數(shù)列. 6分
(2)由(1) ,∴
.
設(shè),
; ∵
, ∴
∴ 10分
=
= 12分
考點(diǎn):1.數(shù)列的遞推公式;2.等差數(shù)列的證明;3.求數(shù)列的前n項(xiàng)和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)已知數(shù)列為首項(xiàng)為1的等差數(shù)列,其公差
,且
成等比數(shù)列.
(1)求的通項(xiàng)公式;
(2)設(shè),數(shù)列
的前
項(xiàng)和
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)集合W是滿足下列兩個(gè)條件的無(wú)窮數(shù)列的集合:①對(duì)任意
,
恒成立;②對(duì)任意
,存在與n無(wú)關(guān)的常數(shù)M,使
恒成立.
(1)若是等差數(shù)列,
是其前n項(xiàng)和,且
試探究數(shù)列
與集合W之間的關(guān)系;
(2)設(shè)數(shù)列的通項(xiàng)公式為
,且
,求M的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列中,
,
,數(shù)列
中,
,且點(diǎn)
在直線
上.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)若,求數(shù)列
的前項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在等比數(shù)列{}中,
,公比
,且
,
與
的等比中項(xiàng)為2.
(1)求數(shù)列{}的通項(xiàng)公式;
(2)設(shè) ,求:數(shù)列{
}的前
項(xiàng)和為
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線的方程為
,數(shù)列
滿足
,其前
項(xiàng)和為
,點(diǎn)
在直線
上.
(1)求數(shù)列的通項(xiàng)公式;
(2)在和
之間插入
個(gè)數(shù),使這
個(gè)數(shù)組成公差為
的等差數(shù)列,令
,試證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在等差數(shù)列中,
,其前
項(xiàng)和為
,等比數(shù)列
的各項(xiàng)均為正數(shù),
,公比為
,且
,
.
(1)求與
;(2)設(shè)數(shù)列
滿足
,求
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列{an}中,首項(xiàng)a1=1,公差d為整數(shù),且滿足a1+3<a3,a2+5>a4,數(shù)列{bn}滿足bn=,其前n項(xiàng)和為Sn.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若S2為S1,Sm (m∈N*)的等比中項(xiàng),求正整數(shù)m的值.
(3)對(duì)任意正整數(shù)k,將等差數(shù)列{an}中落入?yún)^(qū)間(2k,22k)內(nèi)項(xiàng)的個(gè)數(shù)記為ck,求數(shù)列{cn}的前n項(xiàng)和Tn
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知在等差數(shù)列{}中,
=3,前7項(xiàng)和
=28.
(I)求數(shù)列{}的公差d;
(II)若數(shù)列{}為等比數(shù)列,且
,
求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com