日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知在銳角△ABC中,a,b,c為角A,B,C所對的邊,且(b-2c)cosA=a-2acos2
B
2

(1)求角A的值;
(2)若a=
3
,則求b+c的取值范圍.
分析:(1)在銳角△ABC中,根據條件利用正弦定理可得 (sinB-2sinC)cosA=sinA(-cosB),化簡可得cosA
=
1
2
,由此可得A的值.
(2)由正弦定理可得
b
sinB
=
c
sinC
=
a
sinA
=2,可得 b=2(sinB+sinC)=2
3
sin(B+
π
6
).
再由
0<B<
π
2
0<
3
-B<
π
2
,求得B的范圍,再利用正弦函數的定義域和值域求得b+c的取值范圍.
解答:解:(1)在銳角△ABC中,根據(b-2c)cosA=a-2acos2
B
2
,利用正弦定理可得
(sinB-2sinC)cosA=sinA(-cosB),
化簡可得cosA=
1
2
,∴A=
π
3

(2)若a=
3
,則由正弦定理可得
b
sinB
=
c
sinC
=
a
sinA
=2,
∴b=2(sinB+sinC)=2[sinB+sin(
3
-B)]=3sinB+
3
cosB=2
3
sin(B+
π
6
).
由于
0<B<
π
2
0<
3
-B<
π
2
,求得
π
6
<B<
π
2
,∴
π
3
<B+
π
6
3

∴sin(B+
π
6
)∈(
3
2
,1],∴b+c∈(3,2
3
].
點評:本題主要考查正弦定理的應用,正弦函數的定義域和值域,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知在銳角△ABC中,角A,B,C,的對邊分別為a,b,c,且tanB=
3
ac
a2+c2-b2

(1)求∠B;(2)求函數f(x)=sinx+2sinBcosx,(x∈[0,
π
2
])
的最小值及單調遞減區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
m
=(sinx,-1)
n
=(cosx,3)

(1)設函數f(x)=(
m
+
n
)•
m
,求函數f(x)的單調遞增區間;
(2)已知在銳角△ABC中,a,b,c分別為角A,B,C的對邊,
3
c=2asin(A+B)
,對于(1)中的函數f(x),求f(B+
π
8
)
的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
m
=(sinx,-1),
n
=(cosx,3)

(1)當
m
n
時,求
sinx+cosx
3sinx-2cosx
的值;
(2)設函數f(x)=(
m
+
n
)•
m
,求f(x)的單調增區間;
(3)已知在銳角△ABC中,a,b,c分別為角A,B,C的對邊,
3
c=2asin(A+B),對于(2)中的函數f(x),求f(B+
π
8
)的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知在銳角△ABC中,角A、B、C的對邊分別為a、b、c,且tanB=
3
ac
a2+c2-b2

(I)求∠B;
(II)求函數f(x)=sinx+2sinBcosx,(x∈[0,
π
2
]
)的最小值及單調遞減區間.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩一区二区在线免费观看 | 免费色网| 91精品一区二区三区久久久久久 | 波多野结衣亚洲 | 国产成人在线免费观看视频 | 男人的天堂视频 | 免费中文字幕 | 一区二区日韩 | 日本欧美大片 | 午夜亚洲 | 国产中文字幕免费观看 | 九九色综合 | 国产午夜精品美女视频明星a级 | 色网站在线观看 | 欧美极品欧美精品欧美视频 | 亚洲精品久久久久午夜 | 欧美高清在线 | 久久久网 | 久久久久国产 | 久久久久久久国产 | 国产乱码精品一品二品 | www四虎| 欧美乱码久久久久久蜜桃 | www国产亚洲精品久久网站 | 日本www在线 | 欧美久久一区二区 | 久久久久久久久久久久影院 | 欧美日韩国产在线 | 91国内精品 | 免费精品毛片 | 精品成人在线 | 久久人人爽视频 | 国产精品黄视频 | 一区二区免费在线播放 | 国产精品美女久久久久人 | 精品综合久久 | 国产精品99久久久久久www | 午夜精品网站 | 天天干天天添 | 99久久免费看视频 | 亚洲一级性 |