【題目】如圖,幾何體是圓柱的一部分,它是由矩形(及其內部)以
邊所在直線為旋轉軸旋轉
得到的,
是
的中點.
()設
是
上的一點,且
,求
的大小;
()當
時,求二面角
的大小.
【答案】(Ⅰ);(Ⅱ)
.
【解析】試題分析:(Ⅰ)由已知利用線面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,結合∠EBC=120°求得∠CBP=30°;
(Ⅱ).以B為坐標原點,分別以BE,BP,BA所在直線為x,y,z軸建立空間直角坐標系.求出A,E,G,C的坐標,進一步求出平面AEG與平面ACG的一個法向量,由兩法向量所成角的余弦值可得二面角E-AG-C的大小.
試題解析:
(Ⅰ)因為,
,
,
平面
,
,
所以平面
,
又平面
,
所以,又
,
因此
(Ⅱ)以為坐標原點,分別以
,
,
所在的直線為
,
,
軸,建立如圖所示的空間直角坐標系.由題意得
,
,
,故
,
,
,
設是平面
的一個法向量.
由可得
取,可得平面
的一個法向量
.
設是平面
的一個法向量.
由可得
取,可得平面
的一個法向量
.
所以.
因此所求的角為.
科目:高中數學 來源: 題型:
【題目】在中學生綜合素質評價某個維度的測評中,分“優秀、合格、尚待改進”三個等級進行學生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結果的影響,采用分層抽樣方法從高一年級抽取了45名學生的測評結果,并作出頻數統計表如下:
表1:男生
表2:女生
(1)從表二的非優秀學生中隨機選取2人交談,求所選2人中恰有1人測評等級為合格的概率;
(2)由表中統計數據填寫下邊2×2列聯表,并判斷是否有90%的把握認為“測評結果優秀與性別有關”.
參考數據與公式:
K2=,其中n=a+b+c+d.
臨界值表:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x),當x,y∈R時,恒有f(x+y)=f(x)+f(y).當x>0時,f(x)>0.
(1)求證:f(x)是奇函數;
(2)若f(1)=,試求f(x)在區間[-2,6]上的最值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司生產一種電子儀器的固定成本為20000元,每生產一臺儀器需增加投入100元,已知總收益滿足函數: ,其中
是儀器的月產量
(1)將利潤表示為月產量
的函數
(2)當月產量為何值時,公司所獲利潤最大?最大利潤是多少元?(總收益=總成本+利潤)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)求函數的單調區間;
(2)若函數 的圖象在點
處的切線的傾斜角為
,對于任意的
,函數
在區間
上總不是單調函數, 求
的取值范圍;
(3)求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】大家知道, 莫言是中國首位獲得諾貝爾獎的文學家, 國人歡欣鼓舞.某高校文學社從男女生中各抽取名同學調查對莫言作品的了解程度, 結果如下:
閱讀過莫言的作品數( 篇) | |||||
男生 | |||||
女生 |
(1)試估計該校學生閱讀莫言作品超過篇的概率;
(2)對莫言作品閱讀超過篇的則稱為“對莫言作品非常了解” , 否則為“ 一般了解” .根據題意完成下表, 并判斷能否在犯錯誤的概率不超過
的前提下, 認為對莫言作品非常了解與性別有關?
非常了解 | 一般了解 | 合計 | |
男生 | |||
女生 | |||
合計 |
附:,其中
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列三個集合:
①{x|y=x2+1};
②{y|y=x2+1};
③{(x,y)|y=x2+1}.
(1)它們是不是相同的集合?
(2)它們各自的含義是什么?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=a- (a∈R).
(1) 判斷函數f(x)的單調性并給出證明;
(2) 若存在實數a使函數f(x)是奇函數,求a;
(3)對于(2)中的a,若f(x)≥,當x∈[2,3]時恒成立,求m的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}
(1)若a=-2,求B∩A,B∩UA;
(2)若BA,求實數a取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com