日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知三次函數f(x)=
1
3
ax3+
1
2
bx2+cx
(a,b,c∈R,a≠0)的導數為f′(x)滿足條件:
(i)當x∈R時,f′(x-4)=f′(2-x),且f′(x)≥x;
(ii)當x∈(O,2)時,f′(x)≤(
x+1
2
)2
;
(iii)f′(x)在R上的最小值為0.數列{an}是正項數列,{an}的前n項的和是Sn,且滿足Sn=f′(an).
(1)求f′(x)的解析式;
(2)求證:數列{an}是等差數列;
(3)求證:
C
0
n
a1
+
C
1
n
a2
+
C
2
n
a3
+…+
C
n
n
an+1
2n-1
a1+an+1
a1an+1
分析:(1)由已知,f′(x)=ax2+bx+c  由(i)知圖象對稱軸為x=-1,由(iii)知,x=-1時,y=O,即a-b+c=0,在(
x+1
2
)≥
2
f′(x)≥x中,令x=1得 f′(1)=1.解相關的方程組即可求出a,b,c.
(2)由(1)Sn=f′(an)=
1
4
a
2
n
+
1
2
an+
1
4
.再利用an與Sn的關系變形構造an-an-1=2.即證數列{an}是等差數列.
(3)結合二項式系數的性質,將原不等式轉化為2(
C
0
n
1
+
C
1
n
3
+
C
2
n
5
+
…+
C
n
n
2n+1
)≤2(Cn0+Cn1+Cn2+…Cnn
n+1
2n+1

用分析法逐項對應證明 
C
k-1
n
2k-1
+
C
n-k+1
n
2n-2k+3
2(n+1)
2n+1
C
k-1
n
(k=1,2,3…n+1).
解答:解:
證明:(1)由f(x)=
1
3
ax3+
1
2
bx2+cx
知,f′(x)=ax2+bx+c.
∵f′(x-4)=f′(2-x),∴函數f′(x)的圖象關于x=-1對稱,∴-
b
2a
=-1
,b=2a;
由(iii)知,x=-1時,y=O,即a-b+c=0
由(i)得f′(1)≥1,由(2)得f'(1)≤1.
∴f′(1)=1,即a+b+c=1,又a-b+c=0=0.
b=
1
2
,a=
1
4
,c=
1
4

f′(x)=
1
4
x2+
1
2
x+
1
4

(2)證明:由(1)知Sn=f′(an)=
1
4
a
2
n
+
1
2
an+
1
4

當n=1時,a1=S1=
1
4
a
2
1
+
1
2
a1+
1
4
,即
1
4
a
2
1
-
1
2
a1+
1
4
=0
,
即(a1-1)2=0,即a1=1.
當n≥2時,an=Sn-Sn-1=(
1
4
a
2
n
+
1
2
an+
1
4
)-(
1
4
a
2
n-1
+
1
2
an-1+
1
4
)
=
1
4
(a
2
n
-
a
2
n-1
)+
1
2
(an-an-1)

1
4
(an+an-1 )(an-an-1)-
1
2
(an+an-1)=0

(an+an-1 )[
1
4
(an-an-1)-
1
2
]=0

因為數列{an}是正項數列 
1
4
(an-an-1)-
1
2
=0

所以an-an-1=2
∴數列{an}是正項等差數列.
(3)由(2)知,數列{an}是首項為1、公差為2的等差數列,
∴an=1+(n-1)×2=2n-1.
C
0
n
a1
+
C
1
n
a2
+
C
2
n
a3
+…+
C
n
n
an+1
2n-1
a1+an+1
a1an+1
等價于
C
0
n
1
+
C
1
n
3
+
C
2
n
5
+
…+
C
n
n
2n+1
(n+1)2n
2n+1

?2(
C
0
n
1
+
C
1
n
3
+
C
2
n
5
+
…+
C
n
n
2n+1
)≤2(Cn0+Cn1+Cn2+…Cnn
n+1
2n+1

?(
C
0
n
1
+
C
n
n
2n+1
)+(
C
1
0
3
+
C
2
n
2n-1
+…+ (
C
n
n
2n+1
+
C
0
n
1
)
n
k=0
2(n+1)
2n+1
C
k
n

為此,只需證明
C
k-1
n
2k-1
+
C
n-k+1
n
2n-2k+3
2(n+1)
2n+1
C
k-1
n
(k=1,2,3…n+1)
?
1
2k-1
+
1
2n-2k+3
2(n+1)
2n+1

即證明
(2k-1)+(2n-2k+3)
(2k-1)(2n-2k+3)
2(n+1)
2n+1

?
2(n+1)
(2k-1)(2n-2k+3)
2(n+1)
2n+1

?
1
(2k-1)(2n-2k+3)
1
2n+1

?2n+1≤(2k-1)(2n-2k+3)
?4kn-4n+8k-4k2-4≥0
?(k-1)n-(k-1)2≥0
?(k-1)[n-(k-1)]≥0
上式顯然成立.
∴原不等式成立.
點評:本題是函數與導數、數列、不等式的綜合,是一道難題.著重考查函數圖象的對稱性、等差數列的定義、二項式系數的性質等知識,考查了待定系數法、轉化構造法、倒序相加法、放縮法、數形結合等思想方法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知三次函數f(x)=ax3+bx2+cx(a,b,c∈R).
(Ⅰ)若函數f(x)過點(-1,2)且在點(1,f(1))處的切線方程為y+2=0,求函數f(x)的解析式;
(Ⅱ)在(Ⅰ)的條件下,若對于區間[-3,2]上任意兩個自變量的值x1,x2都有|f(x1)-f(x2)|≤t,求實數t的最小值;
(Ⅲ)當-1≤x≤1時,|f′(x)|≤1,試求a的最大值,并求a取得最大值時f(x)的表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:

19、已知三次函數f(x)=x3+ax2+bx+c在x=1和x=-1時取極值,且f(-2)=-4.
(I)求函數y=f(x)的表達式;
(II)求函數y=f(x)的單調區間和極值;
(Ⅲ)若函數g(x)=f(x-m)+4m(m>0)在區間[m-3,n]上的值域為[-4,16],試求m、n應滿足的條件.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知三次函數f(x)=ax3+bx2+cx+d,(a,b,c,d∈R),命題p:y=f(x)是R上的單調函數;命題q:y=f(x)的圖象與x軸恰有一個交點.則p是q的( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知三次函數f(x)=x3+ax2+bx+c在x=1和x=-1時取極值,且f(-2)=-4.
(1)求函數f(x)的表達式; 
(2)求函數的單調區間和極值;
(3)求函數在區間[-2,5]的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知三次函數f(x)=ax3+bx2+cx+d的圖象如圖所示,則
f′(-3)f′(1)
=
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美精品一区在线 | 欧美一二三区在线 | 福利三区 | 成人免费高清 | 欧美日韩天堂 | 午夜一区二区三区在线观看 | 欧美日韩在线观看视频网站 | 色一情一乱一伦一区二区三区 | 国产精品久久久久久久9999 | 亚洲男人的天堂网站 | 91精品入口蜜桃 | 粉嫩一区| 成人精品一区二区三区中文字幕 | 91精品久久久久久综合五月天 | 亚洲自啪| 欧美一级乱黄 | 成人免费视频在线观看 | 夜本色| 色爱av| 欧美 日韩 国产 一区 | 午夜高清视频在线观看 | 日韩在线视频免费看 | 国产一区av在线 | 亚洲精品久久久 | 亚洲国产精品99久久久久久久久 | 亚洲精品视频三区 | av黄在线 | 亚洲人成人一区二区在线观看 | 日本天天色 | 久草在线在线精品观看 | 中文字幕乱码亚洲精品一区 | 2018国产大陆天天弄 | 日韩性在线| 欧美日韩精品一区二区在线播放 | av午夜电影| 国产精品久久久久久久久久东京 | 91色电影 | 91在线播| 日韩成人在线观看 | 欧美黑人做爰xxxⅹ 日韩成人免费视频 | 欧美日韩精品免费 |