【題目】已知函數在
處取得極值.
(1)當時,求曲線
在
處的切線方程;
(2)若函數有三個零點,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】十九大以來,某貧困地區扶貧辦積極貫徹落實國家精準扶貧的政策要求,帶領廣大農村地區人民群眾脫貧奔小康.經過不懈的奮力拼搏,新農村建設取得巨大進步,農民收入也逐年增加.為了更好的制定2019年關于加快提升農民年收入力爭早日脫貧的工作計劃,該地扶貧辦統計了2018年50位農民的年收入并制成如下頻率分布直方圖:
附:參考數據與公式 ,若
,則①
;②
;③
.
(1)根據頻率分布直方圖估計50位農民的年平均收入(單位:千元)(同一組數據用該組數據區間的中點值表示);
(2)由頻率分布直方圖可以認為該貧困地區農民年收入 X 服從正態分布 ,其中
近似為年平均收入
近似為樣本方差
,經計算得:
,利用該正態分布,求:
(i)在2019年脫貧攻堅工作中,若使該地區約有占總農民人數的84.14%的農民的年收入高于扶貧辦制定的最低年收入標準,則最低年收入大約為多少千元?
(ii)為了調研“精準扶貧,不落一人”的政策要求落實情況,扶貧辦隨機走訪了1000位農民.若每個農民的年收入相互獨立,問:這1000位農民中的年收入不少于12.14千元的人數最有可能是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】求下列函數的單調區間,并指出該函數在其單調區間上是增函數還是減函數.
(1)f(x)=-;
(2)f(x)=
(3)f(x)=-x2+2|x|+3.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某海濱浴場海浪的高度y(米)是時間t的(0≤t≤24,單位:小時)函數,記作y=f(t),下表是某日各時的浪高數據:
t(h) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(m) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
經長期觀測,y=f(t)的曲線可近似地看成是函數y=Acosωt+b的圖象.
(1)根據以上數據,求出函數y=Acosωt+b的最小正周期T、振幅A及函數表達式;
(2)依據規定,當海浪高度高于1米時才對沖浪愛好者開放,請依據(1)的結論,判斷一天內的上午8時到晚上20時之間,有多長時間可供沖浪者進行運動?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】高三(3)班學生要安排畢業晚會的3個音樂節目,2個舞蹈節目和1個曲藝節目的演出順序,要求2個舞蹈節目不連排,3個音樂節目恰有2個節目連排,則不同排法的種數是________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex-ax-1,其中e是自然對數的底數,實數a是常數.
(1)設a=e,求函數f(x)的圖象在點(1,f(1))處的切線方程;
(2)討論函數f(x)的單調性.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com