已知二次函數的零點是-1和3,當
時,
,且
。(1)求該二次函數的解析式;(2)求函數
的最大值。
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)
二次函數.
(1)若對任意有
恒成立,求實數
的取值范圍;
(2)討論函數在區間
上的單調性;
(3)若對任意的,
有
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數(其中a,b為實常數)。
(Ⅰ)討論函數的單調區間:
(Ⅱ)當時,函數
有三個不同的零點,證明:
:
(Ⅲ)若在區間
上是減函數,設關于x的方程
的兩個非零實數根為
,
。試問是否存在實數m,使得
對任意滿足條件的a及t
恒成立?若存在,求m的取值范圍;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
某家庭進行理財投資,根據長期收益率市場預測,投資債券等穩健型產品的收益與投資額成正比,投資股票等風險型產品的收益與投資額的算術平方根成正比.已知投資1萬元時兩類產品的收益分別為0.125萬元和0.5萬元(如圖).
(1)分別寫出兩種產品的收益與投資額的函數關系;
(2)該家庭現有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com