解:
(I)證明:在Rt△ABC中,D為AB的中點,得AD=CD=DB,
又∠B=30°,得△ACD是正三角形,
又E是CD的中點,得AF⊥CD.
折起后,AE⊥CD,EF⊥CD,
又AE∩EF=E,AE?平面AED,EF?平面AEF,
故CD⊥平面AEF,
又CD?平面CDB,
故平面AEF⊥平面CBD.
(II)過點A作AH⊥EF,垂足H落在FE的延長線,
因為CD⊥平面AEF,所以CD⊥AH,
所以AH⊥平面CBD.
連接CH并延長交BD的延長線于G,
由已知AC⊥BD,得CH⊥BD,可得BD垂直于面AHC,從而得到BD垂直于線CG
可得∠CGB=90°,
因此△CEH∽△CGD,
則,
設AC=a,易得
∠GDC=60°,DG=,
代入上式得EH=,
又EA=
故cos∠HEA=.
又∵AE⊥CD,EF⊥CD,
∴∠AEF即為所求二面角的平面角,
故二面角A-CD-B大小的余弦值為-.
科目:高中數學 來源: 題型:
6 |
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
| ||
2 |
DM |
DN |
查看答案和解析>>
科目:高中數學 來源: 題型:
A、(0,
| ||||
B、(
| ||||
C、(
| ||||
D、(2,4] |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com