如圖,平面平面
,
是等腰直角三角形,
,四邊形
是直角梯形,
∥AE,
,
,
分別為
的中點.
(1)求異面直線與
所成角的大小;
(2)求直線和平面
所成角的正弦值.
(1) ,(2)
解析試題分析:(1)求空間角,一般利用空間向量解決.首先要建立恰當的空間直角坐標系,由平面平面
及
,運用面面垂直性質定理,可得
,這樣確定豎坐標.橫坐標與縱坐標可根據右手系建立.因為異面直線
與
所成角
等于向量
與
夾角或其補角,而異面直線
與
所成角范圍為
,所以
,(2) 直線
和平面
所成角
與向量
與平面
法向量
夾角互余或相差
,而直線
和平面
所成角
范圍為
,所以
.
試題解析:
∵,又∵面
面
,面
面
,
,∴
,∵BD∥AE,∴
, 2分
如圖所示,以C為原點,分別以CA,CB為x,y軸,以過點C且與平面ABC垂直的直線為z軸,建立空間直角坐標系,∵,∴設各點坐標為
,
,
,
,
,
則,
,
,
,
,
.
(1),
則與
所成角為
. 5分
(2)設平面ODM的法向量,則由
,且
可得
令,則
,
,∴
,設直線CD和平面ODM所成角為
,則
,
∴直線CD和平面ODM所成角的正弦值為. 10分
考點:利用空間向量求異面直線所成角及直線與平面所成角.
科目:高中數學 來源: 題型:解答題
如圖,在三棱錐S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.過A作AF⊥SB,垂足為F,點E,G分別是棱SA,SC的中點.
求證:(1)平面EFG∥平面ABC;(2)BC⊥SA.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐PABCD中,PA⊥底面ABCD,PC⊥AD,底面ABCD為梯形,AB∥DC,AB⊥BC,PA=AB=BC,點E在棱PB上,且PE=2EB.
(1)求證:平面PAB⊥平面PCB;
(2)求證:PD∥平面EAC.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(1)求證:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求點B到平面MAC的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com