【題目】隨著科技的發展,近年看電子書的國人越來越多;所以近期有許多人呼呼“回歸紙質書”,目前出版物閱讀中紙質書占比出現上升現隨機選出200人進行采訪,經統計這200人中看紙質書的人數占總人數.將這200人按年齡分成五組:第l組
,第2組
,第3組
,第4組
,第5組
,其中統計看紙質書的人得到的頻率分布直方圖如圖所示.
(1)求的值及看紙質書的人的平均年齡;
(2)按年齡劃分,把年齡在的稱青壯年組,年齡在
的稱為中老年組,若選出的200人中看電子書的中老年人有10人,請完成下面
列聯表,并判斷能否在犯錯誤的概率不超過0.1的前提下認為看書方式與年齡層有關?
看電子書 | 看紙質書 | 合計 | |
青壯年 | |||
中老年 | |||
合計 |
附:(其中
).
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
與拋物線
交于
,
兩點,且
.
(1)求的方程;
(2)試問:在軸的正半軸上是否存在一點
,使得
的外心在
上?若存在,求
的坐標;若不存在,請說明理由..
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右頂點為
,左焦點為
,離心率
,過點
的直線與橢圓交于另一個點
,且點
在
軸上的射影恰好為點
,若
.
(1)求橢圓的標準方程;
(2)過圓上任意一點
作圓
的切線
與橢圓交于
,
兩點,以
為直徑的圓是否過定點,如過定點,求出該定點;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:1(a>b>0),其右焦點為F(1,0),離心率為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點F作傾斜角為α的直線l,與橢圓C交于P,Q兩點.
(ⅰ)當時,求△OPQ(O為坐標原點)的面積;
(ⅱ)隨著α的變化,試猜想|PQ|的取值范圍,并證明你的猜想.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知圓柱,底面半徑為1,高為2,
是圓柱的一個軸截面,動點
從點
出發沿著圓柱的側面到達點
,其路徑最短時在側面留下的曲線記為
:將軸截面
繞著軸
,逆時針旋轉
角到
位置,邊
與曲線
相交于點
.
(1)當時,求證:直線
平面
;
(2)當時,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】求滿足下列條件的橢圓或雙曲線的標準方程:
(1)橢圓的焦點在軸上,焦距為4,且經過點
;
(2)雙曲線的焦點在軸上,右焦點為
,過
作重直于
軸的直線交雙曲線于
,
兩點,且
,離心率為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,左、右頂點分別為
、
,過左焦點的直線
交橢圓
于
、
兩點(異于
、
兩點),當直線
垂直于
軸時,四邊形
的面積為6.
(1)求橢圓的方程;
(2)設直線、
的交點為
;試問
的橫坐標是否為定值?若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90,,M是線段AE上的動點.
(1)試確定點M的位置,使AC∥平面DMF,并說明理由;
(2)在(1)的條件下,求平面MDF將幾何體ADE-BCF分成的兩部分的體積之比.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通座以下私家車投保交強險第一年的費用(基準保費)統一為
元,在下一年續保時,實行的是費率浮動機制,保費與上一年度車輛發生道路交通事故的情況相聯系,發生交通事故的次數越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一年度未發生有責任道路交通事故 | 下浮 | |
上兩年度未發生有責任道路交通事故 | 下浮 | |
上三年度未發生有責任道路交通事故 | 下浮 | |
上一個年度發生一次有責任不涉及死亡的道路交通事故 | ||
上一個年度發生兩次及兩次以上有責任不涉及死亡的道路交通事故 | 上浮 | |
上一個年度發生有責任交通死亡事故 | 上浮 |
某機構為了解某一品牌普通座以下私家車的投保情況,隨機抽取了
輛車齡已滿三年的該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:
類型 | |||||
數量 |
以這輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規定,,記
為某同學家的一輛該品牌車在第四年續保時的費用,求
的分布列與數學期望;(數學期望值保留到個位數字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損元,一輛非事故車盈利
元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com