【題目】隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購(gòu)是非常方便的購(gòu)物方式,為了了解網(wǎng)購(gòu)在我市的普及情況,某調(diào)查機(jī)構(gòu)進(jìn)行了有關(guān)網(wǎng)購(gòu)的調(diào)查問(wèn)卷,并從參與調(diào)查的市民中隨機(jī)抽取了男女各100人進(jìn)行分析,從而得到表(單位:人)
經(jīng)常網(wǎng)購(gòu) | 偶爾或不用網(wǎng)購(gòu) | 合計(jì) | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合計(jì) |
(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為我市市民網(wǎng)購(gòu)與性別有關(guān)?
(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再?gòu)倪@10人中隨機(jī)選取3人贈(zèng)送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購(gòu)的概率;
②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常網(wǎng)購(gòu)的人數(shù)為,求隨機(jī)變量
的數(shù)學(xué)期望和方差.
參考公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(Ⅰ)詳見(jiàn)解析;(Ⅱ)①;②數(shù)學(xué)期望為6,方差為2.4.
【解析】
(1)完成列聯(lián)表,由列聯(lián)表,得,由此能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為我市市民網(wǎng)購(gòu)與性別有關(guān).
(2)① 由題意所抽取的10名女市民中,經(jīng)常網(wǎng)購(gòu)的有人,偶爾或不用網(wǎng)購(gòu)的有
人,由此能選取的3人中至少有2人經(jīng)常網(wǎng)購(gòu)的概率.
② 由列聯(lián)表可知,抽到經(jīng)常網(wǎng)購(gòu)的市民的頻率為:
,由題意
,由此能求出隨機(jī)變量
的數(shù)學(xué)期望
和方差
.
解:(1)完成列聯(lián)表(單位:人):
經(jīng)常網(wǎng)購(gòu) | 偶爾或不用網(wǎng)購(gòu) | 合計(jì) | |
男性 | 50 | 50 | 100 |
女性 | 70 | 30 | 100 |
合計(jì) | 120 | 80 | 200 |
由列聯(lián)表,得:
,
∴能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為我市市民網(wǎng)購(gòu)與性別有關(guān).
(2)①由題意所抽取的10名女市民中,經(jīng)常網(wǎng)購(gòu)的有人,
偶爾或不用網(wǎng)購(gòu)的有人,
∴選取的3人中至少有2人經(jīng)常網(wǎng)購(gòu)的概率為:
.
② 由列聯(lián)表可知,抽到經(jīng)常網(wǎng)購(gòu)的市民的頻率為:
,
將頻率視為概率,
∴從我市市民中任意抽取一人,恰好抽到經(jīng)常網(wǎng)購(gòu)市民的概率為0.6,
由題意,
∴隨機(jī)變量的數(shù)學(xué)期望
,
方差D(X)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓與橢圓
的離心率相同.
(1)求的值;
(2)過(guò)橢圓的左頂點(diǎn)
作直線(xiàn)
,交橢圓
于另一點(diǎn)
,交橢圓
于
兩點(diǎn)(點(diǎn)
在
之間).①求
面積的最大值(
為坐標(biāo)原點(diǎn));②設(shè)
的中點(diǎn)為
,橢圓
的右頂點(diǎn)為
,直線(xiàn)
與直線(xiàn)
的交點(diǎn)為
,試探究點(diǎn)
是否在某一條定直線(xiàn)上運(yùn)動(dòng),若是,求出該直線(xiàn)方程;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高中嘗試進(jìn)行課堂改革.現(xiàn)高一有兩個(gè)成績(jī)相當(dāng)?shù)陌嗉?jí),其中
班級(jí)參與改革,
班級(jí)沒(méi)有參與改革.經(jīng)過(guò)一段時(shí)間,對(duì)學(xué)生學(xué)習(xí)效果進(jìn)行檢測(cè),規(guī)定成績(jī)提高超過(guò)
分的為進(jìn)步明顯,得到如下列聯(lián)表.
進(jìn)步明顯 | 進(jìn)步不明顯 | 合計(jì) | |
| |||
| |||
合計(jì) |
(1)是否有的把握認(rèn)為成績(jī)進(jìn)步是否明顯與課堂是否改革有關(guān)?
(2)按照分層抽樣的方式從班中進(jìn)步明顯的學(xué)生中抽取
人做進(jìn)一步調(diào)查,然后從
人中抽
人進(jìn)行座談,求這
人來(lái)自不同班級(jí)的概率.
附:,當(dāng)
時(shí),有
的把握說(shuō)事件
與
有關(guān).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)的性質(zhì)描述,正確的是__________.①
的定義域?yàn)?/span>
;②
的值域?yàn)?/span>
;③
的圖象關(guān)于原點(diǎn)對(duì)稱(chēng);④
在定義域上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(
為常數(shù),且
).
(1)若當(dāng)時(shí),函數(shù)
與
的圖象有且只要一個(gè)交點(diǎn),試確定自然數(shù)
的值,使得
(參考數(shù)值
,
,
,
);
(2)當(dāng)時(shí),證明:
(其中
為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)統(tǒng)計(jì),某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量
(千克)之間的對(duì)應(yīng)數(shù)據(jù)的散點(diǎn)圖,如圖所示.
(1)依據(jù)數(shù)據(jù)的散點(diǎn)圖可以看出,可用線(xiàn)性回歸模型擬合與
的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)
并加以說(shuō)明(若
,則線(xiàn)性相關(guān)程度很高,可用線(xiàn)性回歸模型擬合);
(2)求關(guān)于
的回歸方程,并預(yù)測(cè)液體肥料每畝使用量為12千克時(shí),西紅柿畝產(chǎn)量的增加量
約為多少?
附:相關(guān)系數(shù)公式,參考數(shù)據(jù):
,
.
回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(Ⅰ)解不等式: ;
(Ⅱ)當(dāng)時(shí),函數(shù)
的圖象與
軸圍成一個(gè)三角形,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在
上的偶函數(shù),當(dāng)
時(shí),
.
(1)直接寫(xiě)出函數(shù)的增區(qū)間(不需要證明);
(2)求出函數(shù),
的解析式;
(3)若函數(shù),
,求函數(shù)
的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com