【題目】已知不等式,對滿足
的一切實數
都成立,則實數
的取值范圍為______
【答案】
【解析】
試題不等式|a﹣1|≥x+2y+2z恒成立,只要|a﹣1|≥(x+2y+2z)max,利用柯西不等式9=(12+22+22)(x2+y2+z2)≥(1x+2y+2z)2求出x+2y+2z的最大值,再解關于a的絕對值不等式即可.
解:由柯西不等式9=(12+22+22)(x2+y2+z2)≥(1x+2y+2z)2
即x+2y+2z≤3,當且僅當
即,
,
時,x+2y+2z取得最大值3.
∵不等式|a﹣1|≥x+2y+2z,對滿足x2+y2+z2=1的一切實數x,y,z恒成立,
只需|a﹣1|≥3,解得a﹣1≥3或a﹣1≤﹣3,∴a≥4或∴a≤﹣2.
即實數的取值范圍是(﹣∞,﹣2]∪[4,+∞).
故答案為:a≥4或a≤﹣2.
科目:高中數學 來源: 題型:
【題目】為了解人們對“年
月在北京召開的第十三屆全國人民代表大會第二次會議和政協第十三屆全國委員會第二次會議”的關注度,某部門從年齡在
歲到
歲的人群中隨機調查了
人,并得到如圖所示的年齡頻率分布直方圖,在這
人中關注度非常髙的人數與年齡的統計結果如表所示:
年齡 | 關注度非常高的人數 |
(1)由頻率分布直方圖,估計這人年齡的中位數和平均數;
(2)根據以上統計數據填寫下面的列聯表,據此表,能否在犯錯誤的概率不超過
的前提下,認為以
歲為分界點的不同人群對“兩會”的關注度存在差異?
(3)按照分層抽樣的方法從年齡在歲以下的人中任選六人,再從六人中隨機選兩人,求兩人中恰有一人年齡在
歲以下的概率是多少.
|
| 總計 | |
非常高 | |||
一般 | |||
總計 |
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某群體的人均通勤時間,是指單日內該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當
中
(
)的成員自駕時,自駕群體的人均通勤時間為
(單位:分鐘),而公交群體的人均通勤時間不受
影響,恒為
分鐘,試根據上述分析結果回答下列問題:
(1)當在什么范圍內時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?
(2)求該地上班族的人均通勤時間
的表達式;討論
的單調性,并說明其實際意義.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某地區2008年至2014年中,每年的居民人均純收入y(單位:千元)的數據如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入 | 2.7 | 3.6 | 3.3 | 4.6 | 5.4 | 5.7 | 6.2 |
對變量與
進行相關性檢驗,得知
與
之間具有線性相關關系.
(1)求關于
的線性回歸方程;
(2)預測該地區2017年的居民人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線
經過點
,其傾斜角為
,以原點
為極點,以
軸為非負半軸為極軸,與坐標系
取相同的長度單位,建立極坐標系.設曲線
的極坐標方程為
.
(1)若直線與曲線
有公共點,求傾斜角
的取值范圍;
(2)設為曲線
上任意一點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,直線的極坐標方程為
,現以極點
為原點,極軸為
軸的非負半軸建立平面直角坐標系,曲線
的參數方程為
(
為參數).
(1)求直線的直角坐標方程和曲線
的普通方程;
(2)若曲線為曲線
關于直線
的對稱曲線,點
分別為曲線
、曲線
上的動點,點
坐標為
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市為了制定合理的節水方案,對居民用水情況進行調查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數據按照分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖的的值;
(2)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數,說明理由.
(3)估計居民月用水量的中位數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com