已知函數y=f(x)的圖象關于y軸對稱,且當x∈(-∞,0)時,f(x)+xf′(x)<0成立,a=(20.2)·f(20.2),b=(logπ3)·f(logπ3),c=(log39)·f(log39),則a,b,c的大小關系是( )
A.b>a>c B.c>a>b
C.c>b>a D.a>c>b
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷4練習卷(解析版) 題型:解答題
如圖,三棱柱ABC-A1B1C1的側棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1的中點,F是AB的中點,AC=BC=1,AA1=2.
(1)求證:CF∥平面AB1E;
(2)求三棱錐C-AB1E在底面AB1E上的高.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷2練習卷(解析版) 題型:解答題
已知函數f(x)=sin+
-2cos2
,x∈R(其中ω>0).
(1)求函數f(x)的值域;
(2)若函數y=f(x)的圖象與直線y=-1的兩個相鄰交點間的距離為,求函數y=f(x)的單調增區(qū)間.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷2練習卷(解析版) 題型:選擇題
設復數z滿足z·(1-i)=3-i,i為虛數單位,則z=( )
A.1+2i B.1-2i
C.2+i D.2-i
查看答案和解析>>
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷1練習卷(解析版) 題型:填空題
設函數f(x)的定義域為D,若存在非零實數l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱函數f(x)為M上的l高調函數.現給出下列命題:
①函數f(x)=x是R上的1高調函數;
②函數f(x)=sin 2x為R上的π高調函數;
③如果定義域為[-1,+∞)的函數f(x)=x2為[-1,+∞)上的m高調函數,那么實數m的取值范圍是[2,+∞).
其中正確的命題是________.(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷1練習卷(解析版) 題型:選擇題
關于x的不等式x2-2ax-8a2<0(a>0)的解集為(x1,x2),且x2-x1=15,則a=( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學(文)三輪專題體系通關訓練解答題押題練D組練習卷(解析版) 題型:解答題
若兩個橢圓的離心率相等,則稱它們?yōu)?/span>“相似橢圓”.如圖,在直角坐標系xOy中,已知橢圓C1:=1,A1,A2分別為橢圓C1的左、右頂點.橢圓C2以線段A1A2為短軸且與橢圓C1為“相似橢圓”.
(1)求橢圓C2的方程;
(2)設P為橢圓C2上異于A1,A2的任意一點,過P作PQ⊥x軸,垂足為Q,線段PQ交橢圓C1于點H.求證:H為△PA1A2的垂心.(垂心為三角形三條高的交點)
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學(文)三輪專題體系通關訓練解答題押題練A組練習卷(解析版) 題型:解答題
已知各項均為正數的數列{an}的前n項和為Sn,滿足8Sn=a+4an+3(n∈N*),且a1,a2,a7依次是等比數列{bn}的前三項.
(1)求數列{an}及{bn}的通項公式;
(2)是否存在常數a>0且a≠1,使得數列{an-logabn}(n∈N*)是常數列?若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學(文)三輪專題體系通關訓練填空題押題練D組練習卷(解析版) 題型:填空題
把函數y=2sin x,x∈R的圖象上所有的點向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),則所得函數圖象的解析式是________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com