日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

設(shè)關(guān)于x的方程sinx+
3
cosx+a=0在(0,2π)內(nèi)有相異二解α、β.
(1)求α的取值范圍.(2)求tan(α+β)的值.
分析:(Ⅰ)通過兩角和公式對(duì)方程進(jìn)行化簡(jiǎn),因有相異二解推斷出sin(x+
π
3
)不等于sin
π
3
和±1,進(jìn)而推斷|-
a
2
|<1,求出a的取值范圍.
(Ⅱ)把方程的相異解α、β分別代入方程,得到的兩個(gè)方程相減,求得tan
α+β
2
的值,再用二倍角公式求出tan(α+β)的值.
解答:解:(Ⅰ)∵sinx+
3
cosx=2(
1
2
sinx+
3
2
cosx)=2sin(x+
π
3
),
∴方程化為sin(x+
π
3
)=-
a
2

∵方程sinx+
3
cosx+a=0在(0,2π)內(nèi)有相異二解,
∴sin(x+
π
3
)≠sin
π
3
=
3
2

又sin(x+
π
3
)≠±1(∵當(dāng)?shù)扔?span id="p9vv5xb5" class="MathJye">
3
2
和±1時(shí)僅有一解),
∴|-
a
2
|<1.且-
a
2
3
2
.即|a|<2且a≠-
3

∴a的取值范圍是(-2,-
3
)∪(-
3
,2).
(Ⅱ)∵α、β是方程的相異解,
∴sinα+
3
cosα+a=0①.
sinβ+
3
cosβ+a=0②.
①-②得(sinα-sinβ)+
3
(cosα-cosβ)=0.
∴2sin
α-β
2
cos
α+β
2
-2
3
sin
α+β
2
sin
α-β
2
=0,又sin
α+β
2
≠0,
∴tan
α+β
2
=
3
3

∴tan(α+β)=
2tan
α+β
2
1-tan2
α+β
2
=
3
點(diǎn)評(píng):本題主要考查三角函數(shù)中的兩角和公式.解題的關(guān)鍵既要熟練掌握公式,又要靈活利用特殊角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(1,1)
,向量
n
與向量
m
夾角為
3
4
π
,且
m
n
=-1

(1)若向量
n
與向量
q
=(1,0)的夾角為
π
2
,向量
p
=(cosA,2cos2
C
2
)
,其中A,C為△ABC的內(nèi)角,且A,B,C依次成等差數(shù)列,試求|
n
+
p
|的取值范圍.
(2)若A、B、C為△ABC的內(nèi)角,且A,B,C依次成等差數(shù)列,A≤B≤C,設(shè)f(A)=sin2A-2(sinA+cosA)+a2,f(A)的最大值為5-2
2
,關(guān)于x的方程sin(ax+
π
3
)=
m
2
(a>0)
[0,
π
2
]
上有相異實(shí)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sin(x-
π
4
),-1),
b
=(
2
,2)
f(x)=
a
b
+2

(1)求f(x)的表達(dá)式.
(2)用“五點(diǎn)作圖法”畫出函數(shù)f(x)在一個(gè)周期上的圖象.
(3)寫出f(x)在[-π,π]上的單調(diào)遞減區(qū)間.
(4)設(shè)關(guān)于x的方程f(x)=m在x∈[-π,π]上的根為x1,x2m∈(1,
2
)
,求x1+x2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年人教A版高中數(shù)學(xué)必修四1.6三角函數(shù)模型的簡(jiǎn)單應(yīng)用練習(xí)卷(解析版) 題型:解答題

設(shè)關(guān)于x的方程sin內(nèi)有兩個(gè)不同根αβ,求αβ的值及k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知向量
m
=(1,1)
,向量
n
與向量
m
夾角為
3
4
π
,且
m
n
=-1

(1)若向量
n
與向量
q
=(1,0)的夾角為
π
2
,向量
p
=(cosA,2cos2
C
2
)
,其中A,C為△ABC的內(nèi)角,且A,B,C依次成等差數(shù)列,試求|
n
+
p
|的取值范圍.
(2)若A、B、C為△ABC的內(nèi)角,且A,B,C依次成等差數(shù)列,A≤B≤C,設(shè)f(A)=sin2A-2(sinA+cosA)+a2,f(A)的最大值為5-2
2
,關(guān)于x的方程sin(ax+
π
3
)=
m
2
(a>0)
[0,
π
2
]
上有相異實(shí)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的方程x 2 2 x sin θ ( 2 cos 2 θ + 3 ) = 0,其中θ∈[ 0,],則該方程實(shí)根的最大值為           ,實(shí)根的最小值為           

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 亚洲综合色视频在线观看 | 久久精品免费观看视频 | 黄色大片区 | 在线看www | 欧美日韩成人在线视频 | 亚洲av毛片一级二级在线 | 91午夜激情 | 亚洲美女视频 | 久久综合九色综合欧美狠狠 | 国产激情在线观看 | 91亚洲精品乱码久久久久久蜜桃 | 一区不卡在线 | 国产日韩精品在线 | 91麻豆精品国产91久久久久久 | 久久91精品国产 | 中文字幕精品视频在线观看 | 成人av电影免费在线观看 | 蜜桃视频麻豆女神沈芯语免费观看 | 九九热在线免费视频 | 免费一二二区视频 | 欧美午夜一区二区三区免费大片 | 日韩一区二区三区av | 欧美一区二区三区在线看 | 精品国产乱码久久久久久久软件 | 久久91精品| 欧美在线一区二区三区 | 亚洲国产高清视频 | 亚洲第一区国产精品 | 久久久精品影院 | 久久精品一区二区三区不卡牛牛 | 嫩草91| 麻豆毛片 | 污网站免费观看 | 中文字幕在线一区二区三区 | 日日骚av | 99久视频 | 国产在线一区二区三区 | 久久免费精品 | 亚洲午夜视频在线观看 | 国产精品视频久久久 | 日韩在线观看不卡 |