【題目】已知等差數列{an}的公差d≠0,且a1 , a3 , a13成等比數列,若a1=1,Sn是數列{an}前n項的和,則 (n∈N+)的最小值為( )
A.4
B.3
C.2 ﹣2
D.
科目:高中數學 來源: 題型:
【題目】數列{an}與{bn}滿足:①a1=a<0,b1=b>0,②當k≥2時,若ak﹣1+bk﹣1≥0,則ak=ak﹣1 , bk= ;若ak﹣1+bk﹣1<0,則ak=
,bk=bk﹣1 .
(Ⅰ)若a=﹣1,b=1,求a2 , b2 , a3 , b3的值;
(Ⅱ)設Sn=(b1﹣a1)+(b2﹣a2)+…+(bn﹣an),求Sn(用a,b表示);
(Ⅲ)若存在n∈N* , 對任意正整數k,當2≤k≤n時,恒有bk﹣1>bk , 求n的最大值(用a,b表示).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題正確的序號為______.
①周期函數都有最小正周期;②偶函數一定不存在反函數;
③“是單調函數”是“
存在反函數”的充分不必要條件;
④若原函數與反函數的圖像有偶數個交點,則可能都不在直線上;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(x-a)(x-b)(其中a>b),若f(x)的圖象如圖所示,則函數g(x)=ax+b的圖象大致為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}是等差數列,Sn為{an}的前n項和,且a10=19,S10=100;數列{bn}對任意n∈N* , 總有b1b2b3…bn﹣1bn=an+2成立.
(Ⅰ)求數列{an}和{bn}的通項公式;
(Ⅱ)記cn=(﹣1)n ,求數列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質地均勻的骰子決定自己去參加哪個游戲,擲出點數為1或2的人去參加甲游戲,擲出點數大于2的人去參加乙游戲.
(Ⅰ)求這4個人中恰有2人去參加甲游戲的概率;
(Ⅱ)用X,Y分別表示這4個人中去參加甲、乙游戲的人數,記ξ=|X﹣Y|,求隨機變量ξ的分布列與數學期望Eξ.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是一塊地皮,其中
,
是直線段,曲線段
是拋物線的一部分,且點
是該拋物線的頂點,
所在的直線是該拋物線的對稱軸.經測量,
km,
km,
.現要從這塊地皮中劃一個矩形
來建造草坪,其中點
在曲線段
上,點
,
在直線段
上,點
在直線段
上,設
km,矩形草坪
的面積為
km2.
(1)求,并寫出定義域;
(2)當為多少時,矩形草坪
的面積最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若定義在上的函數
滿足:對任意的
,當
時,都有
,則稱
是“非減函數”.
(1)若是“非減函數”,求
的取值范圍;
(2)若為周期函數,且為“非減函數”,證明
是常值函數;
(3)設恒大于零,
是定義在R上、恒大于零的周期函數,
是
的最大值。函數
。證明:“
是周期函數”的充要條件“
是常值函數”.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C1: =1(a>b>0)的離心率為e=
,且過點(1,
).拋物線C2:x2=﹣2py(p>0)的焦點坐標為(0,﹣
).
(Ⅰ)求橢圓C1和拋物線C2的方程;
(Ⅱ)若點M是直線l:2x﹣4y+3=0上的動點,過點M作拋物線C2的兩條切線,切點分別為A,B,直線AB交橢圓C1于P,Q兩點.
(i)求證直線AB過定點,并求出該定點坐標;
(ii)當△OPQ的面積取最大值時,求直線AB的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com