【題目】已知函數在點
處的切線方程是
.
(1)求的值及函數
的最大值;
(2)若實數滿足
.
(i)證明:;
(ii)若,證明:
.
科目:高中數學 來源: 題型:
【題目】為回饋顧客,新華都購物商場擬通過摸球兌獎的方式對500位顧客進行獎勵,規定:每位顧客從一個裝有4個標有面值的球的袋中一次性隨機摸出2個球(球的大小、形狀一模一樣),球上所標的面值之和為該顧客所獲的獎勵額.
(1)若袋中所裝的4個球中有1個所標的面值為40元,其余3個所標的面值均為20元,求顧客所獲的獎勵額的分布列及數學期望;
(2)商場對獎勵總額的預算是30000元,并規定袋中的4個球由標有面值為20元和40元的兩種球共同組成,或標有面值為15元和45元的兩種球共同組成.為了使顧客得到的獎勵總額盡可能符合商場的預算且每位顧客所獲的獎勵額相對均衡.請對袋中的4個球的面值給出一個合適的設計,并說明理由.
提示:袋中的4個球由標有面值為a元和b元的兩種球共同組成,即袋中的4個球所標的面值“既有a元又有b元”.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,若定義域內存在實數
,滿足
,則稱
為“局部奇函數”.
(1)已知二次函數,試判斷
是否為“局部奇函數”?并說明理由.
(2)設是定義在
上的“局部奇函數”,求實數
的取值范圍;
(3)設,若
不是定義域R上的“局部奇函數”,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中錯誤的是__________(填序號)
①命題“,有
”的否定是“
”,有
”;
②已知,
,
,則
的最小值為
;
③設,命題“若
,則
”的否命題是真命題;
④已知,
,若命題
為真命題,則
的取值范圍是
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數的定義域為
,滿足對任意
,有
.則稱
為“
形函數”;若函數
定義域為
,
恒大于0,且對任意
,恒有
,則稱
為“對數
形函數”.
(1)當時,判斷
是否是“
形函數”,并說明理由;
(2)當時,判斷
是否是“對數
形函數”,并說明理由;
(3)若函數是
形函數,且滿足對任意
都有
,問
是否是“對數
形函數”?請加以證明,如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,某市為響應國家號召,大力推行全民健身運動,加強對市內各公共體育運動設施的維護,幾年來,經統計,運動設施的使用年限x(年)和所支出的維護費用y(萬元)的相關數據如圖所示,根據以往資料顯示y對x呈線性相關關系。
(1)求出y關于x的回歸直線方程少
(2)試根據(1)中求出的回歸方程,預測使用年限至少為幾年時,維護費用將超過100萬元?
參考公式:對于一組數據(x1,yl),(x2,y2),…,(xn,Yn),其回歸方程的斜率和截距的最小二乘估計分別為
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com