A. | 1 | B. | $\frac{5}{6}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{30}$ |
分析 判斷數(shù)列{an}是等差數(shù)列,然后利用裂項法求和即可.
解答 解:數(shù)列{an}滿足a1=1,a2=2,2an+1=an+an+2,可知數(shù)列{an}是等差數(shù)列,
可得d=1,則an=n,
bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
則數(shù)列{bn}的前5項和:1$-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$$+\frac{1}{3}-\frac{1}{4}$$+\frac{1}{4}-\frac{1}{5}$$+\frac{1}{5}-\frac{1}{6}$=1-$\frac{1}{6}$=$\frac{5}{6}$.
故選:B.
點評 本題考查等差數(shù)列的判斷,數(shù)列求和的方法裂項法的應用,考查計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | -$\frac{3π}{4}$ | C. | $\frac{5π}{4}$ | D. | $\frac{π}{4}$或-$\frac{3π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[{-2-\frac{{2\sqrt{3}}}{3},-2+\frac{{2\sqrt{3}}}{3}}]$ | B. | $[{-2,-2+\frac{{4\sqrt{3}}}{3}}]$ | C. | [-2,-1] | D. | $[{-2,-2+\frac{{2\sqrt{3}}}{3}}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com