把一重為6N、體積為5×10-4m3的實心球輕輕放入盛滿水的容器內,溢出水的重為 N,金屬球所受浮力的大小為 N.水對容器底部的壓強將 (選填“增大”、“減小”或“不變”)(g取10N/kg)
【答案】
分析:(1)已知小球的質量和體積,由密度公式求出小球的密度,然后與水的密度相比較即可判斷物體的浮沉,若漂浮則根據漂浮條件求出受到的浮力,若懸浮或沉入水底根據阿基米德原理求出受到的浮力,最后再根據阿基米德原理求出溢出水的重;
(2)小球放入水中后,排開的水會溢出燒杯,杯內水的深度不變,根據液體壓強公式可知燒杯底部所受壓強變化.
解答:解:(1)小球的密度:
ρ=

=

=

=1.2×10
3kg/m
3>1.0×10
3kg/m
3,
∴小球在水中靜止后沉入水底,
∵小球完全浸沒,V
排=V
球,
∴受到的浮力:
F
浮=ρ
水gV
排=1.0×10
3kg/m
3×10N/kg×5×10
-4m
3=5N,
∵F
浮=G
排,
∴溢出水的重G
排=5N.
(2)小球放入水中后,排開的水溢出燒杯,杯內水的深度不變,
根據p=ρgh可知,燒杯底部所受水的壓強不變.
故答案為:5;5;不變.
點評:本題考查了密度公式、物體浮沉條件、阿基米德原理和液體壓強公式的靈活運用,根據木塊的密度和水的密度判斷出小球靜止時沉入水底是關鍵.