日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
在平面直角坐標系xOy中,拋物線y=-x2+bx+c與x軸交于A、B兩點,與y軸交于點C,頂點為D,過點A的直線與拋物線交于點E,與y軸交于點F,且點B的坐標為(3,0),點E的坐標為(2,3).
(1)求拋物線的解析式;
(2)若點G為拋物線對稱軸上的一個動點,H為x軸上一點,當以點C、G、H、F四點所圍成的四邊形的周長最小時,求出這個最小值及點G、H的坐標;
(3)設直線AE與拋物線對稱軸的交點為P,M為直線AE上的任意一點,過點M作MN∥PD交拋物線于點N,以P、D、M、N為頂點的四邊形能否為平行四邊形?若能,請求點M的坐標;若不能,請說明理由.
【答案】分析:(1)將點B和點E的坐標代入y=-x2+bx+c,建立二元一次方程組,求出b、c的值即可;
(2)先根據(1)的結論求出A、C的坐標及對稱軸,畫出函數圖象,在y軸的負半軸上取一點I,使得點F點I關于x軸對稱,在x軸上取點H,連接HF、HI、HG、GC、GE、則GF=HI.由待定系數法求出AE的解析式,求出F的坐標,就可以求出CF的值,由勾股定理可以求出EI的值,根據兩點之間線段最短,求出求出EI的解析式就可以求出G、H的坐標,由勾股定理就可以求出最小值;
(3)根據平行四邊形的性質和AE的解析式就可以求出D的坐標,由拋物線的解析式可以求出D的坐標,求出PD的值,可以設出M的坐標(x,x+1)分情況討論當M在線段AE上和在線段AE或EA的延長線上時,分別表示出N點的坐標從而求出結論.
解答:解:(1)∵y=-x2+bx+c經過(3,0)和(2,3),

解得:
∴拋物線的解析式為:y=-x2+2x+3;

(2)∵y=-x2+2x+3,
∴y=-(x-1)2+4,
∴對稱軸為x=1.
當y=0時,-x2+2x+3=0,
∴x1=-1,x2=3,
∴A(-1,0).
當x=0時,y=3,
∴C(0,3)
∴CE=2.OC=3
如圖,在y軸的負半軸上取一點I,使得點F點I關于x軸對稱,在x軸上取點H,連接HF、HI、HG、GC、GE、則GF=HI.
∵拋物線的對稱軸為x=1,
∴點C點E關于對稱軸x=1對稱,
∴CG=EG.
設直線AE的解析式為y=kx+b,由題意,得

解得:
∴直線AE的解析式為y=x+1.
當x=0時,y=1,
∴F(0,1),
∴OF=1,CF=2.
∵點F與點I關于x軸對稱,
∴I(0,-1),
∴OI=1,CI=4.
在Rt△CIE中,由勾股定理,得
EI==2
∵要使四邊形CFHG的周長最小,而CF是定值,
∴只要使CG+GH+HF最小即可.
∵CG+GH+HF=EG+GH+HI,
∴只有當EI為一條直線時,EG+GH+HI最小.
設EI的解析式為y=k1x+b1,由題意,得

解得:
∴直線EI的解析式為:y=2x-1,
∵當x=1時,y=1,
∴G(1,1).
∵當y=0時,x
∴H(,0),
∴四邊形CFHG的周長最小值=CF+CG+GH=CF+EI=2+2

(3)∵y=-x2+2x+3,
∴y=-(x-1)2+4,
∴D(1,4)
∴直線AE的解析式為y=x+1.
∴x=1時,y=2,
∴P(1,2),
∴PD=2.
∵四邊形DPMN是平行四邊形,
∴PD=MN=2.
∵點M在AE上,設M(x,x+1),
①當點M在線段AE上時,點N點M的上方,則N(x,x+3),
∵N點在拋物線上,
∴x+3=-x2+2x+3,
解得:x=0或x=1(舍去)
∴M(0,1).
②當點M在線段AE或EA的延長線上時,點N在M的下方,則N(x,x-1).
∵N點在拋物線上,
∴x-1=-x2+2x+3,
解得:x=或x=
∴M()或().
∴M的坐標為:M(0,1)或()或().
點評:本題是一道二次函數的綜合試題,考查了待定系數法求函數的解析式的運用,四邊形周長的最值的運用,軸對稱的性質的運用,數學建模的運用,平行四邊形的性質的運用,分類討論思想的運用,解答本題時求出函數的解析式是關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

13、在平面直角坐標系xOy中,已知點A(2,-2),在y軸上確定點P,使△AOP為等腰三角形,則符合條件的有
4
個.

查看答案和解析>>

科目:初中數學 來源: 題型:

在平面直角坐標系xOy中,已知拋物線y=ax2+bx+c的對稱軸是x=1,并且經過(-2,-5)和(5,-12)兩點.
(1)求此拋物線的解析式;
(2)設此拋物線與x軸交于A、B兩點(點A在點B的左側),與y軸交于C 點,D是線段BC上一點(不與點B、C重合),若以B、O、D為頂點的三角形與△BAC相似,求點D的坐標;
(3)點P在y軸上,點M在此拋物線上,若要使以點P、M、A、B為頂點的四邊形是平行四邊形,請你直接寫出點M的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在平面直角坐標系xOy中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經過A、B、C三點.
(1)求此拋物線的函數表達式;
(2)設E是y軸右側拋物線上異于點B的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH.則在點E的運動過程中,當矩形EFGH為正方形時,求出該正方形的邊長;
(3)在拋物線上是否存在異于B、C的點M,使△MBC中BC邊上的高為7
2
?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

在平面直角坐標系xOy中,已知A(2,-2),B(0,-2),在坐標平面中確定點P,使△AOP與△AOB相似,則符合條件的點P共有
5
5
個.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點D坐標為
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 午夜一级黄色片 | 国产成人精品一区二三区四区五区 | 亚洲成人一区二区三区 | 色av综合在线 | 99中文字幕| 在线观看欧美成人 | 日本视频中文字幕 | 99久久精品免费看国产免费粉嫩 | 免费亚洲视频 | 日韩视频免费在线观看 | 91香蕉视频 | 草逼逼| 成人精品在线视频 | 欧美在线观看一区 | 国产区视频在线观看 | 亚洲精品乱码8久久久久久日本 | 日本一区二区精品 | 日韩特级 | h视频在线免费观看 | 国产最新精品视频 | 四虎成人在线视频 | 中文字幕在线一区观看 | 成人天堂噜噜噜 | 日韩免费看| 在线一区二区三区四区 | 精品欧美一区二区三区久久久 | 啪一啪免费视频 | 91九色在线 | 日本一区二区视频在线观看 | 中文欧美日韩 | 91麻豆产精品久久久 | 国产精品久久久久久久蜜臀 | 中文字幕av高清 | 欧美乱码精品一区二区三 | 欧美日本高清 | 欧美成人高清 | 欧美在线网站 | 日韩精品极品在线观看 | 操视频网站 | 日韩国产欧美一区二区 | 国产精品一区二区三区99 |