【題目】如圖,△ABC中,∠ABC=30,BC=4,AB=,將邊AC繞著點A逆時針旋轉120得到AD,則BD的長為_______________.
【答案】.
【解析】
如圖,將AB繞點A順時針旋轉120°至接EA,EC,過A作AM⊥BE于M點,過E作 EF⊥BC于點F,易證△EAC≌△BAD,則BD=EC,根據題意可得,E、 A、F三點共線,并求得BF,EF,CF的值,最后用勾股定理求得EC即可完成解答.
解:如圖: 將AB繞點A順時針旋轉120°至接EA,EC,過A作AM⊥BE于M點,過A作 AF⊥BC于點F
∴∠BAE=∠DAC
∴∠BAD=∠EAC
又∵AE=BA,AC=AD
∴△EAC≌△BAD(SAS)
∴BD=EC
∵∠ABC=30, AB=
∴AF=,AE=
,FC=
∵∠ABC=30,AF⊥BC
∴∠BAF=60
∵∠BAF=120
∴E、 A、F三點共線,
∴EF=AE+AF=
∴BD=EC=
故答案為.
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD,E、F兩點在對角線BD上,且BE=DF,連接AE,EC,CF,FA.
(1)求證:四邊形AECF是平行四邊形.
(2)若AF=EF,∠BAF=108°,∠CDF=36°,直接寫出圖中所有與AE相等的線段(除AE外).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在菱形ABCD中,動點P從點B出發,沿折線B→C→D→B運動.設點P經過的路程為x,△ABP的面積為y.把y看作x的函數,函數的圖象如圖②所示,則圖②中的b等于( )
A. B.
C. 5D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線與x軸交于點B,與y軸交于點C,拋物線
經過B、C兩點,且與x軸交于另一點A.
(1)求拋物線的解析式.
(2)點P是線段BC下方的拋物線上的動點(不與點B、C重合),過P作PD∥y軸交BC于點D,以PD為直徑的圓交BC于另一點E,求DE的最大值及此時點P的坐標;
(3)當(2)中的DE取最大值時,將△PDE繞點D旋轉,當點P落在坐標軸上時,求點E的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與實踐
情景再現
我們動手操作:把正方形ABCD,從對角線剪開就分剪出兩個等腰直角三角形,把其中一個等腰三角形與正方形ABCD重新組合在一起,圖形變得豐富起來,當圖形旋轉時問題也隨旋轉應運而生.
如圖①把正方形ABCD沿對角線剪開,得兩個等腰直角三角形△ACD和△BCE,
(1)問題呈現
我們把剪下的兩個三角形一個放大另一個縮小拼成如圖②所示
①點P是一動點,若AB=3,PA=1,當點P位于_ __時,線段PB的值最小;若AB=3,PA=5,當點P位于__ _時,線段PB有最大值.PB的最大值和最小值分別是______.
②直接寫出線段AE與DB的關系是_ ________.
(2)我們把剪下的其中一個三角形放大與正方形組合如圖③所示,點E在直線BC上,FM⊥CD交直線CD于M.
①當點E在BC上時,通過觀察、思考易證:AD=MF+CE;
②當點E在BC的延長線時,如圖④所示;
當點E在CB的延長線上時,如圖⑤所示,
線段AD、MF、CE具有怎樣的數量關系?寫出你的猜想,并選擇圖④或圖⑤證明你的猜想.
問題拓展
(3)連接EM,當=8,
=50,其他條件不變,直接寫出線段CE的長_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC的頂點坐標分別為A(3,0),B(0,4),C(-3,0),動點M,N同時從A點出發,N沿A→C,M沿折線A→B→C,均以每秒1個單位長度的速度移動,當一個動點到達終點C時,另一個動點也隨之停止移動,移動時間記為t秒.連接MN.
(1)移動過程中,將△ABC沿直線MN折疊,若點A恰好落在BC邊上的點D處,求此時t的值.
(2)當點M,N移動時,記△ABC在直線MN右側部分的面積為S,求S關于時間t的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩車分別從A、B兩地同時出發相向而行,并以各自的速度勻速行駛,兩車在相遇之前同時改變了一次速度,并同時到達各自目的地,兩車距B地的路程y(km)與出發時間x(h)之間的函數圖象如圖所示.
(1)分別求甲、乙兩車改變速度后y與x之間的函數關系式;
(2)若m=1,分別求甲、乙兩車改變速度之前的速度;
(3)如果兩車改變速度時兩車相距90km,求m的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com