日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

【題目】ABC中,CACB,∠ACBαα180°).點P是平面內不與AC重合的任意一點,連接AP,將線段AP繞點P逆時針旋轉α得到線段DP,連接ADCP.點MAB的中點,點NAD的中點.

1)問題發現:如圖1,當α60°時,的值是   ,直線MN與直線PC相交所成的較小角的度數是   

2)類比探究:如圖2,當α120°時,請寫出的值及直線MN與直線PC相交所成的較小角的度數,并就圖2的情形說明理由.

3)解決問題:如圖3,當α90°時,若點ECB的中點,點P在直線ME上,請直接寫出點BPD在同一條直線上時的值.

【答案】160°;(230°,見解析;(3)當點P在線段BD上時, ,當點PDB延長線上時,2+

【解析】

1)如圖1中,連接PCBD,延長BDPCK,交ACG.證明△PAC≌△DABSAS),利用全等三角形的性質以及三角形的中位線定理即可解決問題.

2)如圖設MNACF,延長MNPCE.證明△ACP∽△AMN,推出∠ACP∠AMN可得結論.

3)分兩種情形分別畫出圖形,利用三角形中位線定理即可解決問題.

解:(1)如圖1中,連接PCBD,延長BDPCK,交ACG

∵CACB∠ACB60°

∴△ABC是等邊三角形,

∴∠CAB∠PAD60°ACAB

∴∠PAC∠DAB

∵APAD

∴△PAC≌△DABSAS),

∴PCBD∠ACP∠ABD

∵ANNDAMBM

∴BD2MN

∵∠CGK∠BGA∠GCK∠GBA

∴∠CKG∠BAG60°

∴BKPC的較小的夾角為60°

∵MN∥BK

∴MNPC較小的夾角為60°

故答案為60°

2)如圖設MNACF,延長MNPCE

∵CACBPAPD∠APD∠ACB120°

∴△PAD∽△CAB

∵AMMBANND

∴△ACP∽△AMN

∴∠ACP∠AMN

∵∠CFE∠AFM

∴∠FEC∠FAM30°

3)設MNa,由(2)得

∵∠ACB90°,△ABC為等腰直角三角形,

∴AC=AM

∴PCa

∵ME△ABC的中位線,∠ACB90°

∴ME是線段BC的中垂線,

∴PBPCa

∵MN△ADB的中位線,

∴DB2MN2a

如圖31中,當點P在線段BD上時,PDDBPB=(2a

如圖32中,當點PDB延長線上時,PDDB+PB=(2+a

2+

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某商店購進一批成本為每件30元的商品,商店按單價不低于成本價,且不高于50元銷售.經調查發現,該商品每天的銷售量y(件)與銷售單價x(元)之間滿足一次函數關系,其圖象如圖所示.

1)求該商品每天的銷售量y(件)與銷售單價x(元)之間的函數關系式;

2)銷售單價定為多少元時,才能使銷售該商品每天獲得的利潤w(元)最大?最大利潤是多少?

3)若商店要使銷售該商品每天獲得的利潤高于800元,請直接寫出每天的銷售量y(件)的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某水果批發商銷售每箱進價為40元的柑橘,物價部門規定每箱售價不得高于55元;市場調查發現,若每箱以45元的價格銷售,平均每天銷售105箱;每箱以50元的價格銷售,平均每天銷售90箱.假定每天銷售量y(箱)與銷售價x(元/箱)之間滿足一次函數關系式.

1)求平均每天銷售量y(箱)與銷售價x(元/箱)之間的函數關系式;

2)求該批發商平均每天的銷售利潤w(元)與銷售價x(元/箱)之間的函數關系式;

3)當每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明想測量一棵樹的高度,他發現樹的影子恰好落在地面和一斜坡上;如圖,此時測得地面上的影長為8米,坡面上的影長為4米.已知斜坡的坡角為300,同一時 刻,一根長為l米、垂直于地面放置的標桿在地面上的影長為2米,則樹的高度為【 】

A.米 B.12米 C.米 D.10米

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,已知AB2,點EBC邊的中點,連接AEAB′EABE關于AE所在直線對稱,若B′CD是直角三角形,則BC邊的長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖.在ABC中,∠ACB=60°,AC=1,D是邊AB的中點,E是邊BC上一點.若DE平分ABC的周長,則DE的長是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB4AD6,∠ABC60°,∠BAD與∠ABC的平分線AEBF交于點P,連接PD,則tanADP的值為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:點A與⊙O上所有點的連線段中,長度的最小值稱為點A到⊙O的最小距離,記為mA;點A與⊙O上所有點的連線段中,長度的最大值稱為點A到⊙O的最大距離,記為MA,如圖,⊙O的半徑為r,點A在⊙O外,且OAd,則mAdr.證明如下:

證明:如圖1,設B為圓上任意一點,連結OAOBAB

①當OAB不共線時,ABOAOB

ABdr

②當OAB共線時,ABOAOB

ABdr

綜上,ABdr,即mAdr

1)利用剛才的證明,結合所給的圖2,⊙O的半徑為r,點A在⊙O外,且OAd,探究MA,你的結論是MA   ,請證明你的結論;

2)已知⊙O的半徑為2mA4,則MA   

3)在平面直角坐標系中,以原點O為圓心,6為半徑作⊙O,第二象限的點A的坐標為(﹣3a),且mA1,求a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點AC分別在x軸,y軸上,四邊形ABCO為矩形,AB16,點D與點A關于y軸對稱,tanACB,點EF分別是線段ADAC上的動點,(點E不與點AD重合),且∠CEF=∠ACB

1)求AC的長和點D的坐標;

2)求證:

3)當△EFC為等腰三角形時,求點E的坐標.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩免费网站 | 久草精品视频在线播放 | 久一精品| 日韩专区一区二区三区 | av成人一区二区 | 精品免费视频 | 日韩高清一区 | 激情综合久久 | 国产一区二区自拍 | 蜜臀av性久久久久蜜臀aⅴ流畅 | av电影手机在线看 | 日韩欧美中文字幕在线视频 | 激情欧美日韩一区二区 | 伊人春色网| 日本免费网站 | 国产精品久久久久久久久久免费看 | 亚洲福利影院 | h黄动漫日本www免费视频网站 | 国产在线资源 | 中文字幕三区 | 亚洲 欧美 在线 一区 | 91久久国产综合久久 | 国产精品无码专区在线观看 | 草逼一区| 日韩成人片 | 精品久久久中文字幕 | 亚洲欧洲在线观看 | 国产精品亚洲欧美日韩一区在线 | 亚洲精品乱码视频 | 精品二区 | 亚洲精品成人av | 久久久看片 | 中文字幕亚洲不卡 | 亚洲精品成人 | 日韩中文字幕一区二区 | 亚洲精品一区二区三区四区高清 | 性高湖久久久久久久久 | 国产美女在线精品免费观看网址 | 青青草国产成人av片免费 | 超黄网站| 男女羞羞羞视频午夜视频 |