日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖,點A在x軸的正半軸上,以OA為直徑作⊙P,C是⊙P上一點,過點C的直線y=
3
3
x+2
3
與x軸、y軸分別相交于點D、點E,連接AC并延長與y軸相交于點B,點B的坐標為(0,4
3
).
(1)求證:OE=CE;
(2)請判斷直線CD與⊙P位置關系,證明你的結論,并請求出⊙P的半徑長.
分析:(1)連接OC,利用已知條件計算出CE和OB的長度,再證明△BCO為直角三角形,利用:直角三角形斜邊上的中線等于斜邊的一半即可證明OE=CE;
(2)①直線CD是⊙P的切線,證明PC⊥CD.②設⊙P的半徑為r,則在Rt△PCD中,由勾股定理得到關于r的方程,求出r即可.
解答:解:(1)證明:連接OC,
∵直線y=
3
3
x+2
3
與y軸相交于點E,
∴點E的坐標為(0,2
3
),即OE=2
3

又∵點B的坐標為(0,4
3
),
∴OB=4
3

∴BE=OE=2
3

又∵OA是⊙P的直徑,
∴∠ACO=90°,即OC⊥AB,
∴OE=CE(直角三角形斜邊上的中線等于斜邊的一半)

(2)直線CD是⊙P的切線.
①證明:連接PC、PE,由①可知:OE=CE.
在△POE和△PCE,
PO=PC
PE=PE
OE=CE

∴△POE≌△PCE,
∴∠POE=∠PCE.
又∵x軸⊥y軸,
∴∠POE=∠PCE=90°,
∴PC⊥CE,即:PC⊥CD.
又∵直線CD經過半徑PC的外端點C,
∴直線CD是⊙P的切線;
②∵對y=
3
3
x+2
3
,當y=0時,x=-6,即OD=6,
在Rt△DOE中,DE=
OD2+OE2
=
62+(2
3
)
2
=4
3

∴CD=DE+EC=DE+OE=4
3
+2
3
=6
3

設⊙P的半徑為r,則在Rt△PCD中,由勾股定理知PC2+CD2=PD2
即 r2+(6
3
2=(6+r)2
解得 r=6,即⊙P的半徑長為6.
點評:本題綜合考查了切線的性質、判定定理、勾股定理以及直角三角形的性質:直角三角形斜邊上的中線等于斜邊的一半,具有較強的綜合性,有一定的難度.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•金華模擬)如圖,點A在x軸的正半軸,菱形OABC的面積為
2
,點B在雙曲線y=
k
x
上,點C在直線y=x上,則k的值為
2
+1
2
+1

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,點P在y軸的正半軸上,⊙P交x軸于B、C兩點,以AC為直角邊作等腰Rt△ACD,BD分別交y軸和⊙P于E、F兩點,交連接AC、FC.
(1)求證:∠ACF=∠ADB;
(2)若點A到BD的距離為m,BF+CF=n,求線段CD的長;
(3)當⊙P的大小發生變化而其他條件不變時,
DEAO
的值是否發生變化?若不發生變化,請求出其值;若發生變化,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2012年福建省福州市中考數學模擬試卷(十)(解析版) 題型:填空題

如圖,點A在x軸的正半軸,菱形OABC的面積為,點B在雙曲線上,點C在直線y=x上,則k的值為   

查看答案和解析>>

科目:初中數學 來源:2011-2012學年浙江省義烏市初中畢業生學業模擬考試數學試卷(解析版) 題型:填空題

如圖,點A在x軸的正半軸,菱形OABC的面積為,點B在雙曲線上,點C在直線y=x上,則k的值為____________.

 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美成人精品在线观看 | 欧美一级在线 | www.久久久.com| 69久久99精品久久久久婷婷 | 久久精品综合 | 黄色毛片视频网站 | 色干综合| 欧美大片高清免费观看 | 国产高清无av久久 | 97免费在线视频 | 中文字幕国产 | www.久久| 午夜寂寞少妇aaa片毛片 | 黑人巨大精品欧美一区二区三区 | 不卡的毛片 | 欧美日韩三区 | 国产精品久久毛片 | 国产一区精品视频 | 5060毛片| 亚洲人成在线观看 | 综合久久国产九一剧情麻豆 | 久久99精品久久久水蜜桃 | 久久人人爽人人爽人人片av不 | 欧美成人免费在线观看 | 国产精品久久久久久久久久久久久 | 91精品国产九九九久久久亚洲 | 国产色视频在线观看免费 | 伊人欧美在线 | 91精品国产综合久久婷婷香蕉 | 在线日韩精品视频 | 国产成人精品一区二区三区四区 | 国产拍揄自揄精品视频麻豆 | 日日精品 | 粉嫩高清一区二区三区精品视频 | 久久99精品久久久 | 久久69 | 日本在线观看一区 | 黄色av免费观看 | 91精品国产综合久久久久久丝袜 | 欧美在线一区二区三区 | 91精品国产91久久久久久最新 |