日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

在△ABC中,∠BAC=45°,AD⊥BC于D,將△ABD沿AB所在的直線折疊,使點(diǎn)D落在點(diǎn)E處;將△ACD沿AC所在的直線折疊,使點(diǎn)D落在點(diǎn)F處,分別延長(zhǎng)EB、FC使其交于點(diǎn)M.
(1)判斷四邊形AEMF的形狀,并給予證明;
(2)若BD=2,CD=3,試求四邊形AEMF的面積.

【答案】分析:(1)根據(jù)折疊的性質(zhì)可得到∠1=∠3,∠2=∠4,AE=AE,由∠BAC=45°可判斷出∠EAF的度數(shù),進(jìn)而可判斷出四邊形AEMF的形狀;
(2)由圖形翻折變換的性質(zhì)可知,BE=BD,CF=CD,設(shè)正方形AEMF的邊長(zhǎng)是x,在Rt△BMC中利用勾股定理可求出x的值,由正方形的面積公式即可求出其面積.
解答:解:(1)∵AD⊥BC△AEB是由△ADB折疊所得,
∴∠1=∠3,∠E=∠ADB=90°,BE=BD,AE=AD
又∵△AFC是由△ADC折疊所得
∴∠2=∠4,∠F=∠ADC=90°,F(xiàn)C=CD,AF=AD
∴AE=AF
又∵∠1+∠2=45°,
∴∠3+∠4=45°,
∴∠EAF=90°,
∴四邊形AEMF是正方形.

(2)根據(jù)題意知:BE=BD,CF=CD
設(shè)正方形AEMF的邊長(zhǎng)是x,
∴BM=x-2;   CM=x-3
在Rt△BMC中,由勾股定理得:
BC2=CM2+BM2,即(2+3)2=(x-3)2+(x-2)2
解得x=6或x=-1(舍去),
∴EM=6,
∴S正方形AEMF=EM2=62=36.
故答案為:正方形,36.
點(diǎn)評(píng):本題考查的是正方形的判定定理及性質(zhì)、勾股定理、圖形翻折變換的性質(zhì),能根據(jù)題意畫出圖形是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點(diǎn)P從A點(diǎn)出發(fā),沿著AB以每秒4cm的速度向B點(diǎn)運(yùn)動(dòng)精英家教網(wǎng);同時(shí)點(diǎn)Q從C點(diǎn)出發(fā),沿CA以每秒3cm的速度向A點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x.
(1)當(dāng)x為何值時(shí),PQ∥BC;
(2)當(dāng)
S△BCQ
S△ABC
=
1
3
,求
S△BPQ
S△ABC
的值;
(3)△APQ能否與△CQB相似?若能,求出AP的長(zhǎng);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•北京)在△ABC中,BA=BC,∠BAC=α,M是AC的中點(diǎn),P是線段BM上的動(dòng)點(diǎn),將線段PA繞點(diǎn)P順時(shí)針旋轉(zhuǎn)2α得到線段PQ.
(1)若α=60°且點(diǎn)P與點(diǎn)M重合(如圖1),線段CQ的延長(zhǎng)線交射線BM于點(diǎn)D,請(qǐng)補(bǔ)全圖形,并寫出∠CDB的度數(shù);

(2)在圖2中,點(diǎn)P不與點(diǎn)B,M重合,線段CQ的延長(zhǎng)線于射線BM交于點(diǎn)D,猜想∠CDB的大小(用含α的代數(shù)式表示),并加以證明;
(3)對(duì)于適當(dāng)大小的α,當(dāng)點(diǎn)P在線段BM上運(yùn)動(dòng)到某一位置(不與點(diǎn)B,M重合)時(shí),能使得線段CQ的延長(zhǎng)線與射線BM交于點(diǎn)D,且PQ=QD,請(qǐng)直接寫出α的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB以4cm/s的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從C點(diǎn)出發(fā),沿CA以3cm/s的速度向點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒.
(1)當(dāng)x為何值時(shí),BP=CQ;
(2)△APQ能否與△CQB相似?若能,求出x的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•宿遷)(1)如圖1,在△ABC中,BA=BC,D,E是AC邊上的兩點(diǎn),且滿足∠DBE=
1
2
∠ABC(0°<∠CBE<∠
1
2
ABC).以點(diǎn)B為旋轉(zhuǎn)中心,將△BEC按逆時(shí)針旋轉(zhuǎn)∠ABC,得到△BE′A(點(diǎn)C與點(diǎn)A重合,點(diǎn)E到點(diǎn)E′處)連接DE′,
求證:DE′=DE.
(2)如圖2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC邊上的兩點(diǎn),且滿足∠DBE=
1
2
∠ABC(0°<∠CBE<45°).
求證:DE2=AD2+EC2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB以每秒4cm,的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從C點(diǎn)出發(fā),沿CA以3cm/s的速度向點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒.
(1)當(dāng)x為何值時(shí),BP=CQ
(2)當(dāng)x為何值時(shí),PQ∥BC
(3)△APQ能否與△CQB相似?若能,求出x的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 精品亚洲自拍 | jizz国产免费 | 日韩欧美精品在线 | 激情久久久 | 亚洲天堂一区二区三区 | 欧美日韩电影一区二区 | 一区中文字幕 | 国产欧美在线观看 | 狠狠躁夜夜躁人人爽天天高潮 | 国产一级91 | 日韩一区二区三区视频 | 视色网站 | 精品超碰| 天天草影院 | 天堂网av2020 | 欧美a区| 中文字幕亚洲一区 | 久久久av | 精品久久久久久亚洲精品 | 欧美日韩一 | 国产精品久久久久久久久久东京 | 亚洲永久免费 | 在线视频 亚洲 | 免费毛片网 | 国产在线国偷精品产拍免费观看 | 99精品全国免费观看视频软件 | 黄色电影在线免费观看 | 欧洲精品| 狠狠久久伊人中文字幕 | 天堂免费在线观看视频 | 久久久久国产精品视频 | 国产噜噜噜噜噜久久久久久久久 | 大黑人交xxx极品hd | 精品国模一区二区三区欧美 | 91偷拍精品一区二区三区 | 欧美午夜精品一区二区三区电影 | 红色av社区 | 国产精品㊣新片速递bt | 不卡视频一区二区 | 国产精品爱久久久久久久 | 亚洲精品美女 |