日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

【題目】問題:如圖(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,試探究AD、DE、EB滿足的等量關系.
[探究發現]
小聰同學利用圖形變換,將△CAD繞點C逆時針旋轉90°得到△CBH,連接EH,由已知條件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.
根據“邊角邊”,可證△CEH≌   , 得EH=ED.
在Rt△HBE中,由定理,可得BH2+EB2=EH2 , 由BH=AD,可得AD、DE、EB之間的等量關系是     .
[實踐運用]
(1)如圖(2),在正方形ABCD中,△AEF的頂點E、F分別在BC、CD邊上,高AG與正方形的邊長相等,求∠EAF的度數;
(2)在(1)條件下,連接BD,分別交AE、AF于點M、N,若BE=2,DF=3,BM=2,運用小聰同學探究的結論,求正方形的邊長及MN的長.

【答案】解:根據“邊角邊”,可證△CEH≌△CDE,得EH=ED.
在Rt△HBE中,由勾股定理,可得BH2+EB2=EH2 , 由BH=AD,可得AD、DE、EB之間的等量關系是AD2+EB2=DE2;故答案為:△CDE;勾股;AD2+EB2=DE2
(1)在Rt△ABE和Rt△AGE中,

∴Rt△ABE≌Rt△AGE(HL),
∴∠BAE=∠GAE,
同理,Rt△ADF≌Rt△AGF,
∴∠GAF=∠DAF,
∵四邊形ABCD是正方形,
∴∠BAD=90°,
∴∠EAF=∠BAD=45°;
(2)由(1)知,Rt△ABE≌Rt△AGE,Rt△ADF≌Rt△AGF,
∴BE=EG=2,DF=FG=3,則EF=5,
設AG=x,則CE=x﹣2,CF=x﹣3,
∵CE2+CF2=EF2
∴(x﹣2)2+(x﹣3)2=52
解這個方程,得x1=6,x2=﹣1(舍去),
∴AG=6,
∴BD=
∴AB=6,
∵MN2=MB2+ND2
設MN=a,則
所以a=
即MN=
【解析】(1)根據正方形的性質和全等三角形的判定方法證明Rt△ABE≌Rt△AGE和Rt△ADF≌Rt△AGF,由全等三角形的性質即可求出∠EAF=∠BAD=45°;
(2)由(1)知,Rt△ABE≌Rt△AGE,Rt△ADF≌Rt△AGF,設AG=x,則CE=x﹣2,CF=x﹣3.因為CE2+CF2=EF2 , 所以(x﹣2)2+(x﹣3)2=52 . 解這個方程,求出x的值即可得到AG=6,在(2)中,MN2=MB2+ND2 , MN=a, , 所以a=.即MN=
【考點精析】根據題目的已知條件,利用正方形的性質的相關知識可以得到問題的答案,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】計算下列各題
(1) ﹣1=
(2)2x2+3=7x.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為全面開展“陽光大課間”活動,某中學三個年級準備成立“足球”、“籃球”、“跳繩”、“踢毽”四個課外活動小組,學校體育組根據七年級學生的報名情況(每人限報一項)繪制了兩幅不完整的統計圖(如圖),
請根據以上信息,完成下列問題:
(1)m= , n= , 并將條形統計圖補充完整;
(2)根據七年級的報名情況,試問全校2000人中,大約有多少人報名參加足球活動小組?
(3)根據活動需要,從“跳繩”小組的二男二女四名同學中隨機選取兩人到“踢毽”小組參加訓練,請用列表或樹狀圖的方法計算恰好選中一男一女兩名同學的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABO中,已知點 、B(﹣1,﹣1)、O(0,0),正比例函數y=﹣x圖象是直線l,直線AC∥x軸交直線l與點C.
(1)C點的坐標為
(2)以點O為旋轉中心,將△ABO順時針旋轉角α(90°≤α<180°),使得點B落在直線l上的對應點為B′,點A的對應點為A′,得到△A′OB′. ①∠α=;②畫出△A′OB′.
(3)寫出所有滿足△DOC∽△AOB的點D的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=5,BC=7,點E為BC上一動點,把△ABE沿AE折疊,當點B的對應點B′落在∠ADC的角平分線上時,則點B′到BC的距離為(  )

A.1或2
B.2或3
C.3或4
D.4或5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,點D是BC的中點,點E、F分別是線段AD及其延長線上,且DE=DF,給出下列條件:①BE⊥EC;②BF∥EC;③AB=AC,從中選擇一個條件使四邊形BECF是菱形,并給出證明,你選擇的條件是___(只填寫序號).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點D是等邊△ABC中BC邊的延長線上一點,且AC=CD,以AB為直徑作⊙O,分別交邊AC、BC于點E、點F

(1)求證:AD是⊙O的切線;
(2)連接OC,交⊙O于點G,若AB=4,求線段CE、CG與圍成的陰影部分的面積S.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,坐標原點O為矩形ABCD的對稱中心,頂點A的坐標為(1,t),AB∥x軸,矩形A′B′C′D′與矩形ABCD是位似圖形,點O為位似中心,點A′,B′分別是點A,B的對應點,=k.已知關于x,y的二元一次方程(m,n是實數)無解,在以m,n為坐標記為(m,n)的所有的點中,若有且只有一個點落在矩形A′B′C′D′的邊上,則kt的值等于(  )

A.
B.1
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校分別于2012年、2014年隨機調查相同數量的學生,對數學課開展小組合作學習的情況進行調查(開展情況分為較少、有時、常常、總是四種),繪制成部分統計圖如下.請根據圖中信息,解答下列問題:

(1)a=%,b=%,“總是”對應陰影的圓心角為
(2)請你補全條形統計圖
(3)若該校2014年共有1200名學生,請你統計其中認為數學課“總是”開展小組合作學習的學生有多少名?
(4)相比2012年,2014年數學課開展小組合作學習的情況有何變化?

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久综合99re88久久爱 | 色婷婷免费 | 中文字幕国产一区 | 欧美日韩专区 | 国产日韩精品视频 | 成人亚洲 | 嫩草视频在线观看免费 | 国产二区视频 | 91国内精品 | 日韩性视频 | 婷婷成人在线 | 国产一区观看 | 狠狠伊人 | 久久草在线视频 | 久久久久a | 精品国产欧美一区二区三区成人 | 国语对白做受欧美 | 日本美女影院 | 国产亚洲女人久久久久毛片 | 一级欧美日韩 | 日韩欧美在线播放 | 中文一区 | 国产裸体永久免费视频网站 | 日韩中文字幕av | 精品国产污污免费网站入口 | 天天天干天天射天天天操 | 久久国产一区二区 | 欧美国产日韩在线 | 欧美二区精品 | 欧美日韩一区二区中文字幕 | 韩国电影久久影院 | 日韩欧美视频 | 欧美国产一区二区 | 日本一本不卡 | 天天精品 | 欧美一区三区三区高中清蜜桃 | 黄页网站大全在线观看 | 免费高清av| 久久亚洲一区 | mm1313亚洲国产精品美女 | 91视频一88av |