日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

如圖1,直線y=x與雙曲線y=數學公式(k>0,x>0)交于點P,PA⊥x軸于A,S△PAO=數學公式
(1)求k的值.
(2)如圖2,點E是y軸負半軸上一動點,點F是x軸正半軸上一動點,且PE⊥PF,求OF-OE的值.
(3)如圖3,將點A向右平移5個單位長度得點M,問:雙曲線y=數學公式(x>0)上是否存在點Q,使S△QPO=S△MPO?若存在,求Q點的坐標;若不存在,請說明理由.

解:(1)由點P為y=x與反比例函數y=的交點,設P(a,a)(a>0),
可得出PA=OA=a,又S△PAO=
OA•PA=a2=
解得:a=3或a=-3(舍去),
∴P(3,3),
將x=3,y=3代入反比例函數解析式得:3=
則k=3×3=9;

(2)過P作PF⊥PE,交x軸于點F,過P作PB⊥y軸于點B,
∵∠ODE=∠PDF,∠EOD=∠EPF=90°,
∴∠BEP=∠AFP,
又BP=OA,PA=OA=3,
∴BP=AP,
在△BEP和△AFP中,

∴△BEP≌△AFP(AAS),
∴BE=AF,又OA=PA=OB=3,
則OF-OE=OA+AF-OE=OA+BE-OE=OA+BO+OE-OE=OA+OB=2OA=6;

(3)存在點Q,使S△QPO=S△MPO,理由為:
假如Q存在,在反比例函數圖象上找一點Q,連接OQ,PQ,過Q作QC⊥x軸于C點,
將A點沿x軸向右平移5個單位,得到M(8,0),連接PM,
∴OM=8,又PA=3,
∴S△MPO=OM•PA=12,
又S△QPO=S△MPO
∴S△QPO=12,
設Q(m,)(m>0),則有OC=m,QC=
又PA=OA=3,故AC=m-3,
∴S△QPO=S△PAO+S梯形APQC-S△QCO=++3)(m-3)-=12,
整理得:(m-9)(m+1)=0,
解得:m=9或m=-1(舍去),
∴Q(9,1),
則存在點Q,使S△QPO=S△MPO,此時Q點的坐標為(9,1).
分析:(1)由P為y=x與反比例函數的交點,得到P在y=x上,故設P(a,a),且a大于0,可得出AP=OA=a,由三角形AOP為直角三角形,且面積已知,利用三角形的面積公式列出關于a的方程,求出方程的解得到a的值,確定出P的坐標,將P的坐標代入反比例函數解析式中,即可求出k的值;
(2)根據題意過P作PF垂直于PE,交x軸于點F,過P作PB垂直于y軸于點B,先由一對對頂角相等及一對直角相等,利用三角形的內角和定理得出∠BEP=∠AFP,再由一對直角相等,以及BP=OA=AP,利用AAS可得出三角形BEP與三角形AFP全等,利用全等三角形的對應邊相等可得出BE=AF,由OF=OA+AF,將AF等量代換為BE,而BE=OB+OE,由OB=PA=OA=3,將OB換為OA,可得出OF-OE=2OA=6;
(3)存在點Q,使S△QPO=S△MPO,理由為:假如Q存在,在反比例函數圖象上找一點Q,連接OQ,PQ,過Q作QC⊥x軸于C點,由A的坐標及平移的規律找出M的坐標,在x軸上作出M點,連接PM,三角形POM以OM為底邊,AP為高,利用三角形的面積公式求出三角形POM的面積,可得出三角形QPO的面積,由Q在反比例函數圖象上,設出Q的坐標為Q(m,)(m>0),可表示出QC與OC,而三角形QOP的面積=三角形AOP的面積+直角梯形APQC的面積-三角形OQC的面積,而三角形AOP的面積與三角形QOC的面積相等,故三角形QOP的面積=直角梯形APQC的面積,利用梯形的面積公式列出關于m的方程,求出方程的解得到m的值,即可確定出Q的坐標.
點評:此題屬于反比例函數綜合題,涉及的知識有:全等三角形的判定與性質,待定系數法求函數解析式,反比例函數解析式中k的意義,坐標與圖形性質,利用了轉化及等量代換的思想,根據題意做出相應的圖形是本題的突破點.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖1,直線y=x與雙曲線y=
k
x
(k>0,x>0)交于點P,PA⊥x軸于A,S△PAO=
9
2

(1)求k的值.
(2)如圖2,點E是y軸負半軸上一動點,點F是x軸正半軸上一動點,且PE⊥PF,求OF-OE的值.
(3)如圖3,將點A向右平移5個單位長度得點M,問:雙曲線y=
k
x
(x>0)上是否存在點Q,使S△QPO=S△MPO?若存在,求Q點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,直線y=x與直線y=-2x+4交于點A,點P是直線OA上一動點,作PQ∥x軸交直線y=-2x+4于點Q,以PQ為邊,向下作正方形PQMN,設點P的橫坐標為t.
(1)求交點A的坐標;
(2)求點P從點O運動到點A過程中,正方形PQMN與△OAB重疊的面積S與t的函數關系式;
(3)是否存在點Q,使△OCQ為等腰三角形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖1,直線y=
1
3
x
與雙曲線y=
k
x
交于A,B兩點,且點A的坐標為(6,m).
(1)求雙曲線y=
k
x
的解析式;
(2)點C(n,4)在雙曲線y=
k
x
上,求△AOC的面積;
(3)過原點O作另一條直線l與雙曲線y=
k
x
交于P,Q兩點,且點P在第一象限.若由點A,P,B,Q為頂點組成的四邊形的面積為20,請直接寫出所有符合條件的點P的坐標.

查看答案和解析>>

科目:初中數學 來源:2010-2011學年浙江省臺州市三門中學九年級(上)月考數學試卷(10月份)(解析版) 題型:解答題

如圖1,直線y=-x+與兩坐標軸交于A、B,以點M(1,0)為圓心,MO為半徑作小⊙M,又以點M為圓心、MA為半徑作大⊙M交坐標軸于C、D.
(1)求證:直線AB是小⊙M的切線.
(2)連接BM,若小⊙M以2單位/秒的速度沿x軸向右平移,大⊙M以1單位/秒的速度沿射線BM方向平移,問:經過多少秒后,兩圓相切?
(3)如圖2,作直線BE∥x軸交大⊙M于E,過點B作直線PQ,連接PE、PM,使∠EPB=120°,請你探究線段PB、PE、PM三者之間的數量關系.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品成人3p一区二区三区 | 久草青娱乐 | 亚洲日本国产 | 在线观看成人小视频 | 色片免费 | 亚洲国产精品精华液网站 | 欧美二区三区 | 日本三级电影天堂 | 欧美日本久久 | 色综合久久久久综合99 | 国产精品久久久久久久久久久久冷 | 国产精品国产精品国产专区不片 | 日产久久 | 久久久精品免费观看 | 欧美v亚洲 | 日韩精品一区二区三区在线观看 | 99精品国产一区二区三区 | 国产精品久久久久国产a级 一级免费黄色 | 国产在线视频在线 | 国产一区二区三区精品久久久 | 国产精品久久嫩一区二区免费 | 精品国产欧美 | 国产极品福利 | a在线免费观看 | 亚洲欧美国产精品久久久久 | 国产99精品 | 国产精品v欧美精品v日韩 | 欧美一区二区三区在线视频观看 | 视频一区二区在线观看 | a视频在线观看 | 欧美激情综合色综合啪啪五月 | 精品1区| 99动漫 | 成人爽a毛片一区二区免费 美女一级毛片 | 亚洲欧洲精品一区二区 | 亚洲男人的天堂网站 | 99精品一区二区三区 | 亚洲欧美综合 | 精东粉嫩av免费一区二区三区 | 激情毛片 | 日本h视频在线观看 |