已知雙曲線y=(x>0),直線l1:y﹣
=k(x﹣
)(k<0)過定點F且與雙曲線交于A,B兩點,設(shè)A(x1,y1),B(x2,y2)(x1<x2),直線l2:y=﹣x+
.
(1)若k=﹣1,求△OAB的面積S;
(2)若AB=,求k的值;
(3)設(shè)N(0,2),P在雙曲線上,M在直線l2上且PM∥x軸,求PM+PN最小值,并求PM+PN取得最小值時P的坐標.(參考公式:在平面直角坐標系中,若A(x1,y1),B(x2,y2)則A,B兩點間的距離為AB=
)
解:(1)當k=1時,l1:y=﹣x+2,
聯(lián)立得,,化簡得x2﹣2
x+1=0,
解得:x1=﹣1,x2=
+1,
設(shè)直線l1與y軸交于點C,則C(0,2).
S△OAB=S△AOC﹣S△BOC=•2
•(x2﹣x1)=2
;
(2)根據(jù)題意得: 整理得:kx2+
(1﹣k)x﹣1=0(k<0),
∵△=[(1﹣k)]2﹣4×k×(﹣1)=2(1+k2)>0,
∴x1、x2 是方程的兩根,
∴ ①,
∴AB==
,
=,
=,
將①代入得,AB==
(k<0),
∴=
,
整理得:2k2+5k+2=0,
解得:k=2,或 k=﹣;
(3)F(,
),如圖:
設(shè)P(x,),則M(﹣
+
,
),
則PM=x+﹣
=
=
,
∵PF==
,
∴PM=PF.
∴PM+PN=PF+PN≥NF=2,
當點P在NF上時等號成立,此時NF的方程為y=﹣x+2,
由(1)知P(﹣1,
+1),
∴當P(﹣1,
+1)時,PM+PN最小值是2.
科目:初中數(shù)學 來源: 題型:
為推進“傳統(tǒng)文化進校園”活動,某校準備成立“經(jīng)典誦讀”、“傳統(tǒng)禮儀”、“民族器樂”和“地方戲曲”等四個課外活動小組.學生報名情況如圖(每人只能選擇一個小組):
(1)報名參加課外活動小組的學生共有 100 人,將條形圖補充完整;
(2)扇形圖中m= ,n= ;
(3)根據(jù)報名情況,學校決定從報名“經(jīng)典誦讀”小組的甲、乙、丙、丁四人中隨機安排兩人到“地方戲曲”小組,甲、乙恰好都被安排到“地方戲曲”小組的概率是多少?請用列表或畫樹狀圖的方法說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
九年級(3)班共有50名同學,如圖是該班一次體育模擬測試成績的頻數(shù)分布直方圖(滿分為30分,成績均為整數(shù)).若將不低于23分的成績評為合格,則該班此次成績達到合格的同學占全班人數(shù)的百分比是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖是一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,轉(zhuǎn)盤分為6個大小相同的扇形,指針的位置固定,轉(zhuǎn)動的轉(zhuǎn)盤停止后,其中的某個扇形會恰好停在指針所指的位置(指針指向兩個扇形的交線時,當作指向右邊的扇形),指針指向陰影區(qū)域的概率是( 。
| A. | | B. | | C. | | D. | |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,AB∥CD,F(xiàn)E⊥DB,垂足為E,∠1=50°,則∠2的度數(shù)是( )
| A. | 60° | B. | 50° | C. | 40° | D. | 30° |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
一張桌子上擺放有若干個大小、形狀完全相同的碟子,現(xiàn)從三個方向看,其三種視圖如圖所示,則這張桌子上碟子的總數(shù)為( )
| A. | 11 | B. | 12 | C. | 13 | D. | 14 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com