如圖所示,已知直線y=kx+m與x軸、y軸分別交于A、C兩點,拋物線y=-x2+bx+c經過A、C兩點,點B是拋物線與x軸的另一個交點,當時,y取最大值
.
(1)求拋物線和直線的解析式;
(2)設點P是直線AC上一點,且S△ABP:S△BPC=1∶3,求點P的坐標;
(3)若直線與(1)中所求的拋物線交于M、N兩點,問:
①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,請說明理由;
②猜想當∠MON>90°時,a的取值范圍(不寫過程,直接寫結論).
(參考公式:在平面直角坐標系中,若M(x1,y1),N(x2,y2),則M,N兩點間的距離為)
解:(1)由題意得 解得 ∴拋物線的解析式為 ∴ ∴直線 (2)分兩種情況: 、冱c ∵ ∴ ∵ ∴ ∴ ∴ ∴ 、邳c ∵ ∴ ∵ ∴ ∴ ∴ ∴ 綜上所述, (3)①方法1:假設存在 由 得 ∴ 又 ∴ ∵ ∴ ∴ ∴ ∴ 即 ∴ ∴存在 方法2:假設存在 可證明 ∴ 即 ∴ 即 以下過程同上 、诋 |
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
1 |
2 |
k |
x |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com