【題目】某數(shù)學(xué)興趣小組學(xué)過銳角三角函數(shù)后,到市龍?jiān)春珗@測量塑像“夸父追日”的高度,如圖所示,在A處測得塑像頂部D的仰角為45°,塑像底部E的仰角為30.1°,再沿AC方向前進(jìn)10m到達(dá)B處,測得塑像頂部D的仰角為59.1°.求塑像“夸父追日”DE高度.(結(jié)果精確到0.1m.參考數(shù)據(jù):sin30.1°≈0.50,cos30.1°≈0.87,tan30.1°≈0.58,sin59.1°≈0.86,cos59.1°≈0.51,tan59.1°≈1.67)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E為BC邊上的一點(diǎn),連接AE,過點(diǎn)D作DM⊥AE,垂足為點(diǎn)M,交AB于點(diǎn)F.將△AMF沿AB翻折得到△ANF.延長DM,AN交于點(diǎn)P. 給出以下結(jié)論①;②
;③
;④若
,則
;.其中正確的是( 。
A.①②③④B.①②③C.①②④D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,
,
、
兩點(diǎn)關(guān)于直線
對稱,直線
交
于點(diǎn)
,交另一邊于點(diǎn)
,且
,則
的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小元步行從家去火車站,走到 6 分鐘時(shí),以同樣的速度回家取物品,然后從家乘出租車趕往火車站,結(jié)果比預(yù)計(jì)步行時(shí)間提前了3 分鐘.小元離家路程S(米)與時(shí)間t(分鐘)之間的函數(shù)圖象如圖,從家到火車站路程是( )
A.1300 米B.1400 米C.1600 米D.1500 米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,拋物線y=ax2﹣2ax+4(a<0)交x軸于點(diǎn)A、B,與y軸交于點(diǎn)C,AB=6.
(1)如圖1,求拋物線的解析式;
(2)如圖2,點(diǎn)R為第一象限的拋物線上一點(diǎn),分別連接RB、RC,設(shè)△RBC的面積為s,點(diǎn)R的橫坐標(biāo)為t,求s與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,如圖3,點(diǎn)D在x軸的負(fù)半軸上,點(diǎn)F在y軸的正半軸上,點(diǎn)E為OB上一點(diǎn),點(diǎn)P為第一象限內(nèi)一點(diǎn),連接PD、EF,PD交OC于點(diǎn)G,DG=EF,PD⊥EF,連接PE,∠PEF=2∠PDE,連接PB、PC,過點(diǎn)R作RT⊥OB于點(diǎn)T,交PC于點(diǎn)S,若點(diǎn)P在BT的垂直平分線上,OB﹣TS=,求點(diǎn)R的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)著作(九章算術(shù))中有如下問題:“今有人持金出五關(guān),前關(guān)二而稅一.次關(guān)三而稅一,次關(guān)四而稅一,次關(guān)五而稅一,次關(guān)六而稅一,并五關(guān)所稅,適重一斤.”其意思為“今有人持金出五關(guān),第關(guān)所收稅金為持金的
,第
關(guān)所收稅金為剩余金的
,第
關(guān)所收稅金為剩余金的
,第
關(guān)所收稅金為剩余金的
,第
關(guān)所收稅金為剩余金的
,
關(guān)所收稅金之和,恰好重
斤.”若設(shè)這個(gè)人原本持金
斤,根據(jù)題意可列方程為__________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一組對角互補(bǔ)的四邊形叫做互補(bǔ)四邊形.
概念理解:
①在互補(bǔ)四邊形中,
與
是一組對角,若
則
_
②如圖1,在中,點(diǎn)
分別在邊
上,且
求證:四邊形
是互補(bǔ)四邊形.
探究發(fā)現(xiàn):如圖2,在等腰
中,
點(diǎn)
分別在邊
上,
四邊形
是互補(bǔ)四邊形,求證:
.
推廣運(yùn)用:如圖3,在
中,點(diǎn)
分別在邊
上,
四邊形
是互補(bǔ)四邊形,若
,求
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,折疊矩形,具體操作:①點(diǎn)
為
邊上一點(diǎn)(不與
、
重合),把
沿
所在的直線折疊,
點(diǎn)的對稱點(diǎn)為
點(diǎn);②過點(diǎn)
對折
,折痕
所在的直線交
于點(diǎn)
、
點(diǎn)的對稱點(diǎn)為
點(diǎn).
(1)求證:∽
.
(2)若,
.
①點(diǎn)在移動的過程中,求
的最大值.
②如圖2,若點(diǎn)恰在直線
上,連接
,求線段
的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平直角坐標(biāo)系中,規(guī)定:拋物線的相關(guān)直線為
.例如:二次函數(shù)
的相關(guān)直線為
.
(1)直接寫出拋物線的相關(guān)直線,并求出拋物線
與其相關(guān)直線的交點(diǎn)坐標(biāo);
(2)如圖,拋物線與它的相關(guān)直線
交于
、
兩點(diǎn).
①求拋物線的解析式;
②連結(jié),求
的面積;
③作,過拋物線上一動點(diǎn)
(不與
、
重合)作直線
的平行線交
于點(diǎn)
,若以點(diǎn)
、
、
、
為頂點(diǎn)的四邊形是平行四邊形,直接寫出點(diǎn)
的橫坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com