【題目】如圖,已知Rt△ABC中,∠C=90°,AC=8,BC=6,點P以每秒1個單位的速度從A向C運動,同時點Q以每秒2個單位的速度從A→B→C方向運動,它們到C點后都停止運動,設點P,Q運動的時間為t秒.
(1)在運動過程中,求P,Q兩點間距離的最大值;
(2)經過t秒的運動,求△ABC被直線PQ掃過的面積S與時間t的函數關系式;
(3)P,Q兩點在運動過程中,是否存在時間t,使得△PQC為等腰三角形?若存在,求出此時的t值;若不存在,請說明理由(≈2.24,結果保留一位小數).
【答案】
(1)
解:如圖1,過Q作QE⊥AC于E,連接PQ,
∵∠C=90°,
∴QE∥BC,
∴△ABC∽△AQE,
∵AQ=2t,AP=t,
∵∠C=90°,AC=8,BC=6,
∴AB=10,
∴PE=t,QE=
t,
∴PQ2=QE2+PE2,
∴PQ=t,
當Q與B重合時,PQ的值最大,
∴當t=5時,PQ的最大值=.
(2)
如圖1,△ABC被直線PQ掃過的面積=S△AQP,
當Q在AB邊上時,S=APQE=
t
t=
t2,(0<t≤5)
當Q在BC邊上時,△ABC被直線PQ掃過的面積=S四邊形ABQP,
∴S四邊形ABQP=S△ABC﹣S△PQC=×8×6﹣
(8﹣t)(16﹣2t)=﹣t2+16t﹣40,(5<t≤8);
∴經過t秒的運動,△ABC被直線PQ掃過的面積S與時間t的函數關系式:S=t2或S=﹣t2+16t﹣40.
(3)存在,如圖2,連接CQ,PQ,
由(1)知QE=t,CE=AC﹣AE=8﹣
,PQ=
t,
∴CQ==
=
=2
,
①當CQ=CP時,
即:2=8﹣t,
解得;t=,
②當PQ=CQ時,
即;t=2
,
解得:t=,t=
(不合題意舍去),
③當PQ=PC時,
即t=8﹣t,
解得:t=3﹣5≈1.7;
綜上所述:當t=,t=
,t=1.7時,△PQC為等腰三角形.
【解析】(1)如圖1,過Q作QE⊥AC于E,連接PQ,由△ABC∽△AQE,得到比例式 , 求得PE=
t , QE=
t , 根據勾股定理得到PQ2=QE2+PE2 , 求出PQ=
t,當Q與B重合時,PQ的值最大,于是得到當t=5時,PQ的最大值=3
;
(2)由三角形的面積公式即可求得;
(3)存在,如圖2,連接CQ,PQ,分三種情況①當CQ=CP時,②當PQ=CQ時,③當PQ=PC時,列方程求解即可.
【考點精析】本題主要考查了等腰三角形的性質和勾股定理的概念的相關知識點,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調查發現,這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤。(用含x的代數式表示)
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,臺風中心位于點O處,并沿東北方向(北偏東45°),以40千米/小時的速度勻速移動,在距離臺風中心50千米的區域內會受到臺風的影響,在點O的正東方向,距離千米的地方有一城市A.
(1)問:A市是否會受到此臺風的影響,為什么?
(2)在點O的北偏東15°方向,距離80千米的地方還有一城市B,問:B市是否會受到此臺風的影響?若受到影響,請求出受到影響的時間;若不受到影響,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以點A為圓心,AC為半徑,作⊙A,交AB于點D,交CA的延長線于點E,過點E作AB的平行線EF交⊙A于點F,連接AF,BF,DF.
(1)求證:△ABC≌△ABF;
(2)當∠CAB等于多少度時,四邊形ADFE為菱形?請給予證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,頂點M在y軸上的拋物線與直線y=x+1相交于A、B兩點,且點A在x軸上,點B的橫坐標為2,連結AM、BM.
(1)求拋物線的函數關系式;
(2)判斷△ABM的形狀,并說明理由
(3)把拋物線與直線y=x的交點稱為拋物線的不動點.若將(1)中拋物線平移,使其頂點為(m,2m),當m滿足什么條件時,平移后的拋物線總有不動點.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,對角線AC,BD相交于點E,F是邊BA延長線上一點,連接EF,以EF為直徑作⊙O,交DC于D,G兩點,AD分別于EF,GF交于I,H兩點.
(1)求∠FDE的度數;
(2)試判斷四邊形FACD的形狀,并證明你的結論;
(3)當G為線段DC的中點時,
①求證:FD=FI;
②設AC=2m,BD=2n,求⊙O的面積與菱形ABCD的面積之比.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標為(﹣1, ),以原點O為中心,將點A順時針旋轉150°得到點A′,則點A′的坐標為( )
A.(0,﹣2)
B.(1,﹣ )
C.(2,0)
D.( ,﹣1)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com