日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
(2009•漳州)幾何模型:
條件:如下圖,A、B是直線l同旁的兩個定點.

問題:在直線l上確定一點P,使PA+PB的值最小.
方法:作點A關于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′B的值最小(不必證明).
模型應用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連接BD,由正方形對稱性可知,B與D關于直線AC對稱.連接ED交AC于P,則PB+PE的最小值是______;
(2)如圖2,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值;
(3)如圖3,∠AOB=45°,P是∠AOB內一點,PO=10,Q、R分別是OA、OB上的動點,求△PQR周長的最小值.
【答案】分析:(1)由題意易得PB+PE=PD+PE=DE,在△ADE中,根據勾股定理求得即可;
(2)作A關于OB的對稱點A′,連接A′C,交OB于P,求A′C的長,即是PA+PC的最小值;
(3)作出點P關于直線OA的對稱點M,關于直線OB的對稱點N,連接MN,它分別與OA,OB的交點Q、R,這時三角形PEF的周長=MN,只要求MN的長就行了.
解答:解:(1)∵四邊形ABCD是正方形,
∴AC垂直平分BD,
∴PB=PD,
由題意易得:PB+PE=PD+PE=DE,
在△ADE中,根據勾股定理得,DE=

(2)作A關于OB的對稱點A′,連接A′C,交OB于P,
PA+PC的最小值即為A′C的長,
∵∠AOC=60°
∴∠A′OC=120°
作OD⊥A′C于D,則∠A′OD=60°
∵OA′=OA=2
∴A′D=


(3)分別作點P關于OA、OB的對稱點M、N,連接OM、ON、MN,MN交OA、OB于點Q、R,連接PR、PQ,此時△PQR周長的最小值等于MN.
由軸對稱性質可得,OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,
∴∠MON=2∠AOB=2×45°=90°,
在Rt△MON中,MN===10
即△PQR周長的最小值等于10
點評:此題綜合性較強,主要考查有關軸對稱--最短路線的問題,綜合應用了正方形、圓、等腰直角三角形的有關知識.
練習冊系列答案
相關習題

科目:初中數學 來源:2009年全國中考數學試題匯編《圖形的對稱》(04)(解析版) 題型:解答題

(2009•漳州)幾何模型:
條件:如下圖,A、B是直線l同旁的兩個定點.

問題:在直線l上確定一點P,使PA+PB的值最小.
方法:作點A關于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′B的值最小(不必證明).
模型應用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連接BD,由正方形對稱性可知,B與D關于直線AC對稱.連接ED交AC于P,則PB+PE的最小值是______;
(2)如圖2,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值;
(3)如圖3,∠AOB=45°,P是∠AOB內一點,PO=10,Q、R分別是OA、OB上的動點,求△PQR周長的最小值.

查看答案和解析>>

科目:初中數學 來源:2010年江蘇省鹽城市鹽都區中考數學一模試卷(解析版) 題型:解答題

(2009•漳州)幾何模型:
條件:如下圖,A、B是直線l同旁的兩個定點.

問題:在直線l上確定一點P,使PA+PB的值最小.
方法:作點A關于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′B的值最小(不必證明).
模型應用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連接BD,由正方形對稱性可知,B與D關于直線AC對稱.連接ED交AC于P,則PB+PE的最小值是______;
(2)如圖2,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值;
(3)如圖3,∠AOB=45°,P是∠AOB內一點,PO=10,Q、R分別是OA、OB上的動點,求△PQR周長的最小值.

查看答案和解析>>

科目:初中數學 來源:2010年江蘇省鹽城市鞍湖實驗學校初三中考模擬試卷(解析版) 題型:解答題

(2009•漳州)幾何模型:
條件:如下圖,A、B是直線l同旁的兩個定點.

問題:在直線l上確定一點P,使PA+PB的值最小.
方法:作點A關于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′B的值最小(不必證明).
模型應用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連接BD,由正方形對稱性可知,B與D關于直線AC對稱.連接ED交AC于P,則PB+PE的最小值是______;
(2)如圖2,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值;
(3)如圖3,∠AOB=45°,P是∠AOB內一點,PO=10,Q、R分別是OA、OB上的動點,求△PQR周長的最小值.

查看答案和解析>>

科目:初中數學 來源:2010年北京市延慶縣畢業考試數學試卷(解析版) 題型:解答題

(2009•漳州)幾何模型:
條件:如下圖,A、B是直線l同旁的兩個定點.

問題:在直線l上確定一點P,使PA+PB的值最小.
方法:作點A關于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′B的值最小(不必證明).
模型應用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連接BD,由正方形對稱性可知,B與D關于直線AC對稱.連接ED交AC于P,則PB+PE的最小值是______;
(2)如圖2,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值;
(3)如圖3,∠AOB=45°,P是∠AOB內一點,PO=10,Q、R分別是OA、OB上的動點,求△PQR周長的最小值.

查看答案和解析>>

科目:初中數學 來源:2009年福建省漳州市中考數學試卷(解析版) 題型:解答題

(2009•漳州)幾何模型:
條件:如下圖,A、B是直線l同旁的兩個定點.

問題:在直線l上確定一點P,使PA+PB的值最小.
方法:作點A關于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′B的值最小(不必證明).
模型應用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連接BD,由正方形對稱性可知,B與D關于直線AC對稱.連接ED交AC于P,則PB+PE的最小值是______;
(2)如圖2,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值;
(3)如圖3,∠AOB=45°,P是∠AOB內一點,PO=10,Q、R分別是OA、OB上的動點,求△PQR周長的最小值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产综合精品一区二区三区 | 欧美十次 | 欧美日韩国产在线观看 | 亚洲综合国产激情另类一区 | 欧美成人a交片免费看 | 国产在线资源 | 污网站在线观看免费 | 九色91视频 | 中文字幕在线免费 | 日本a视频 | 亚洲 欧美 激情 另类 校园 | 日韩另类| 6080夜射猫 | 久久综合热 | 免费观看一级特黄欧美大片 | 欧美性一级 | 97超碰自拍 | 亚洲精品在线播放 | 黄色在线观看网站 | 欧美大片在线 | 精品国产色 | 高清av一区| 亚洲午码| 午夜激情电影在线 | 日韩不卡 | 97国产在线 | 国产精品一区自拍 | 成人天堂资源www在线 | 国产精品一区欧美 | 91精品国产入 | 亚洲一区中文字幕在线观看 | 欧美精品久久 | 国产在线观看91一区二区三区 | 成人av影片在线观看 | 精东粉嫩av免费一区二区三区 | 亚洲综合福利视频 | 免费一级在线观看 | 国产特黄一级 | 国产a免费 | 波多野结衣一区二区三区高清 | 不卡一区二区三区四区 |