日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
15.如圖,拋物線y=a(x-1)2-n與直線y=2x+b相交于點A(-1,0)和點B(m,12).
(1)試確定該二次函數的表達式;
(2)若拋物線y=a(x-1)2-n的頂點為C,求△ABC的面積;
(3)若點P是拋物線y=a(x-1)2-n上點C-點B部分(不含點B和點C)的一動點,當四邊形ABPC的面積達到最大時,求點P的坐標.

分析 (1)把A點代入直線解析式可求得b的值,再把B點坐標代入直線解析可求得B點坐標,利用待定系數法可求得二次函數的表達式;
(2)可先求得C點坐標,再利用待定系數法可求得直線BC的解析式,設直線BC與x軸交于點D,可求得D點的坐標,從而可求得△ABC的面積;
(3)當直線BC向右平移與拋物線有唯一的公共點時,四邊形ABPC的面積最大,可設平移后的直線解析式為y=4x+h,聯立拋物線與該方程整理得到一元二次方程,方程有唯一解可求得方程的解,可求得P點坐標.

解答 解:
(1)∵點A(-1,0)在直線y=2x+b上,
∴0=-2+b,解得b=2,
∴一次函數解析式為y=2x+2,
∵點B(m,12)在直線y=2x+2上,
∴2m+2=12,解得m=5,
∴B點坐標為(5,12),
∵拋物線y=a(x-1)2-n過A、B兩點,
∴把A、B兩點坐標代入可得$\left\{\begin{array}{l}{0=(-1-1)^{2}a-n}\\{12=(5-1)^{2}a-n}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=1}\\{n=4}\end{array}\right.$,
∴拋物線表達式為:y=(x-1)2-4;
(2)如圖1,設直線BC與x軸交于點D,

由(1)可知C點坐標為(1,-4),設直線BC為y=kx+c,
根據題意可得$\left\{\begin{array}{l}{-4=k+c}\\{12=5k+c}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=4}\\{c=-8}\end{array}\right.$,
∴直線BC解析式為y=4x-8,令y=0,可解得x=2,
∴D點坐標為(2,0),則AD=3,
∴S△ABC=S△ABD+S△ACD=$\frac{1}{2}$×3×4+$\frac{1}{2}$×3×12=24;
(3)當直線BC向右平移與拋物線有唯一的公共點時,四邊形ABPC的面積最大,
∵直線BC解析式為y=4x-8,
∴可設平移后的直線解析式為y=4x+h,
根據題意可得方程組$\left\{\begin{array}{l}{y=(x-1)^{2}-4}\\{y=4x+h}\end{array}\right.$有唯一的解,
∴方程x2-6x-3-h=0有唯一的解,
∴(-6)2-4×1×(-3-h)=0,解得h=-12,
此時方程x2-6x+9=0的唯一解為x=3,
當x=3時,代入拋物線可知y=0,
∴P點坐標為(3,0),
即當P點坐標為(3,0)時,四邊形ABPC的面積最大.

點評 本題為二次函數的綜合應用,涉及知識點有待定系數法、三角形的面積、一元二次方程及判別式等.在(1)中注意點的坐標與函數解析式的關系,在(2)中求得D點的坐標是解題的關鍵,注意圖形的分割,在(3)中確定出P點的位置是解題的關鍵.本題考查知識點較多,綜合較強,特別是第(3)問中P點位置的確定難度很大.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:填空題

5.如圖,已知⊙O的直徑AB=3cm,C為⊙O上的一點,sinA=$\frac{2}{5}$,則BC=$\frac{6}{5}$ cm.

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

6.在2015年聊城市舉辦的“劃龍舟,慶端午”比賽中,甲、乙兩隊在比賽時的路程s(米)與時間t(分鐘)之間的函數關系圖象如圖所示,根據圖象得到下列結論,其中錯誤的是( 。
A.這次比賽的全程是500米
B.乙隊先到達終點
C.比賽中兩隊從出發到1.1分鐘時間段,乙隊的速度比甲隊的速度快
D.乙與甲相遇時乙的速度是375米/分鐘

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

3.如圖是二次函數y=ax2+bx+c(a≠0)的圖象,有下列判斷:①b2>4ac,②2a+b=0,③3a+c>0,④4a-2b+c<0;⑤9a+3b+c<0.其中正確的是(  )
A.①②③B.②③④C.①②⑤D.③④⑤

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

10.如圖所示,將一副直角三角形拼放在一起得到四邊形ABCD,其中∠BAC=45°,∠ACD=30°,點E為CD邊上的中點,連接AE,將△ADE沿AE所在直線翻折得到△AD′E,D′E交AC于F點.若AB=3$\sqrt{2}$cm.求:
(1)試說明BD′平分∠ABC;
(2)試在線段AC上確定一點P,使得DP+EP的值最小,并求出這個最小值;
(3)直接寫出點D′到BC的距離$\frac{3\sqrt{2}-\sqrt{6}}{2}$cm.

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

20.下列運算正確的是(  )
A.($\frac{1}{2}$)-1=-$\frac{1}{2}$B.5÷(-2)×$\frac{1}{2}$=5÷(-1)=-5
C.(2a+b)2=4a2+4ab+b2D.a2•(ab)3=a4b2

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

7.如圖1,△ABC為等邊三角形,△ADE是△ABC的位似圖形,位似比為k:1,點D在AB上,點E在AC上.

(1)證明:DE∥BC;
(2)將△ADE繞點A旋轉α至△AMN的位置.
①如圖2,當AM⊥BC時,請你判斷AC與MN的位置關系,并說明理由;
②若四邊形AMCN為菱形,如圖3,求旋轉角α及k的值;
③如圖4,當直線MN過點B時,求k與旋轉角α(0°<α<60°)之間的關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

4.如圖,在等腰直角三角形ABC中,∠BAC=90°,AC=8$\sqrt{2}$cm,AD⊥BC于點D,點P從點A出發,沿A→C方向以$\sqrt{2}$cm/s的速度運動到點C停止,在運動過程中,過點P作PQ∥AB交BC于點Q,以線段PQ為邊作等腰直角三角形PQM,且∠PQM=90°(點M,C位于PQ異側).設點P的運動時間為x(s),△PQM與△ADC重疊部分的面積為y(cm2
(1)當點M落在AB上時,x=4;
(2)當點M落在AD上時,x=$\frac{16}{3}$;
(3)求y關于x的函數解析式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

5.已知非負數a的平方根是3x-10和-x+2,求非負數a.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 五月天婷婷激情网 | 国产精品免费一区 | 亚洲无av在线中文字幕 | a在线免费观看 | 日韩av成人在线 | 黄色大片在线播放 | 国产黄色免费网站 | 天天干天天做 | 成人免费毛片片v | 色激情网 | 青青草国产在线视频 | 日韩精品一区在线观看 | 亚洲第一免费视频 | 欧美精品久久久久久久 | 国产精品伦子伦免费视频 | 午夜在线免费视频 | 青青草视频污 | 国产色一区 | 精品国产三级 | 久久久久久中文字幕 | 久久久夜色精品 | 青青草视频网站 | 国产精品久久久久久久午夜 | 成人小视频在线 | 丁香婷婷激情 | 精品一区二区免费视频 | 欧美一级片网站 | 午夜精品视频在线观看 | 国产一区在线看 | 狠狠操综合 | 综合久久久 | 色av综合| 大色av| 成人看片网 | 国产精品福利一区 | 国产免费一区二区三区最新不卡 | 亚洲激情综合网 | 久久久久国产一区二区三区 | 俺去俺来也在线www色官网 | 在线视频黄 | 在线播放中文字幕 |