【題目】如圖1.直線AD∥EF,點B,C分別在EF和AD上,∠A=∠ABC,BD平分∠CBF.
(1)求證:AB⊥BD;
(2)如圖2,BG⊥AD于點G,求證:∠ACB=2∠ABG;
(3)在(2)的條件下,如圖3,CH平分∠ACB交BG于點H,設∠ABG=α,請直接寫出∠BHC的度數.(用含α的式子表示)
【答案】(1)見解析;(2)見解析;(3)∠BHC=90°+∠α.
【解析】
(1)根據平行線的性質以及角平分線的定義,即可得到AB⊥BD;
(2)根據BG⊥AD,AD∥EF,可得∠FBG=∠AGB=90°,進而可得∠ABG=∠DBF,根據EF∥AD,即可得到∠ACB=∠CBF=2∠DBF=2∠ABG;
(3)根據平行線的性質以及角平分線的定義可得∠ABG=∠D=∠α,再根據∠HGC=90°即可得到∠BHC=∠HGC+∠ACH=90°+∠α.
解:(1)∵AD∥EF,
∴∠ABE=∠A=∠ABC,
又∵BD平分∠CBF,
∴∠CBD=∠FBD,
∴∠ABD=(∠CBE+∠CBF)=
×180°=90°,
∴AB⊥BD;
(2)∵BG⊥AG,
∴∠FBG=∠AGB=90°,
∵∠ABD=90°,
∴∠ABG=∠DBF,
∵EF∥AD,
∴∠ACB=∠CBF=2∠DBF=2∠ABG;
(3)∵ AD∥EF,
∴∠D=∠DBF,
∴∠ACB=2∠DBF=2∠D,
∴∠D=∠ACB,
∵CH平分∠ACB,
∴∠ACH=∠ACB,
∴∠ACH=∠D,
∵∠ABG=∠D=α,
∴∠ACH=α,
∵BG⊥GC,
∴∠HGC=90°,
∴∠BHC=∠HGC+∠ACH=90°+∠α.
科目:初中數學 來源: 題型:
【題目】(1)探究發現
數學活動課上,小明說“若直線向左平移3個單位,你能求平移后所得直線所對應函數表達式嗎?”
經過一番討論,小組成員展示了他們的解答過程:
在直線上任取點
,
向左平移3個單位得到點
設向左平移3個單位后所得直線所對應的函數表達式為.
因為過點
,
所以,
所以,
填空:所以平移后所得直線所對應函數表達式為
(2)類比運用
已知直線,求它關于
軸對稱的直線所對應的函數表達式;
(3)拓展運用
將直線繞原點順時針旋轉90°,請直接寫出:旋轉后所得直線所對應的函數表達式 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°,AE分別交BC、BD于點E、F,若CE=2,連接CF.以下結論:①∠BAF=∠BCF; ②點E到AB的距離是2; ③S△CDF:S△BEF=9:4; ④tan∠DCF=3/7. 其中正確的有()
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲乙兩人玩摸球游戲:一個不透明的袋子中裝有相同大小的3個球,球上分別標有數字1,2,3.首先,甲從中隨機摸出一個球,然后,乙從剩下的球中隨機摸出一個球,比較球上的數字,較大的獲勝.
(1)求甲摸到標有數字3的球的概率;
(2)這個游戲公平嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】珠海市水務局對某小區居民生活用水情況進行了調査.隨機抽取部分家庭進行統計,繪制成如下尚未完成的頻數分布表和頻率分布直方圖.請根據圖表,解答下列問題:
月均用水量(單位:噸 | 頻數 | 頻率 |
2≤x<3 | 4 | 0.08 |
3≤x<4 | a | b |
4≤x<5 | 14 | 0.28 |
5≤x<6 | 9 | c |
6≤x<7 | 6 | 0.12 |
7≤x<8 | 5 | 0.1 |
合計 | d | 1.00 |
(1)b= ,c= ,并補全頻數分布直方圖;
(2)為鼓勵節約用水用水,現要確定一個用水量標準P(單位:噸),超過這個標準的部分按1.5倍的價格收費,若要使60%的家庭水費支出不受影響,則這個用水量標準P= 噸;
(3)根據該樣本,請估計該小區400戶家庭中月均用水量不少于5噸的家庭約有多少戶?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣4與x軸交于A(4,0)、B(﹣2,0)兩點,與y軸交于點C,點P是線段AB上一動點(端點除外),過點P作PD∥AC,交BC于點D,連接CP.
(1)求該拋物線的解析式;
(2)當動點P運動到何處時,BP2=BDBC;
(3)當△PCD的面積最大時,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形中,點
在邊
上(點
與點
、
不重合),過點
作
,
與邊
相交于點
,與邊
的延長線相交于點
.
(1)與
有什么樣的數量關系?請直接寫出你的結論:____________________
(2)、
、
的數量之間具有怎樣的關系?并證明你所得到的結論.
(3)如果正方形的邊長是1,,直接寫出點
到直線
的距離.
解:(1)與
的數量關系:____________________
(2)、
、
的數量之間的關系是 .
證明:
(3)點到直線
的距離是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,P為AD邊上一點,沿直線BP將△ABP翻折至△EBP(點A的對應點為點E),PE與CD相交于點O,且OE=OD.
(1)求證:PE=DH;
(2)若AB=10,BC=8,求DP的長.
【答案】(1)見解析;(2).
【解析】試題分析:(1) 先證明△DOP≌△EOH,再利用等量代換得到PE=DH.
(2) 設DP=x, Rt△BCH中,先用 x表示三角形三邊,利用勾股定理列式解方程.
試題解析:
(1)解:證明:∵OD=OE,∠D=∠E=90°,∠DOP=∠EOH,
∴△DOP≌△EOH,
∴OP=OH,
∴PO+OE=OH+OD,
∴PE=DH.
(2)解:設DP=x,則EH=x,BH=10﹣x,
CH=CD﹣DH=CD﹣PE=10﹣(8﹣x)=2+x,
∴在Rt△BCH中,BC2+CH2=BH2
(2+x)2+82=(10﹣x)2,
∴x=,
∴DP=.
【題型】解答題
【結束】
25
【題目】某文教店老板到批發市場選購A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進價比B品牌每套套裝進價多2.5元,已知用200元購進A種套裝的數量是用75元購進B種套裝數量的2倍.
(1)求A,B兩種品牌套裝每套進價分別為多少元?
(2)若A品牌套裝每套售價為13元,B品牌套裝每套售價為9.5元,店老板決定,購進B品牌的數量比購進A品牌的數量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購進A品牌工具套裝多少套?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】古希臘的畢達哥拉斯學派由古希臘哲學家畢達哥拉斯所創立,畢達哥拉斯學派認為數是萬物的本原,事物的性質是由某種數量關系決定的,如他們研究各種多邊形數:記第n個k邊形數N(n,k)=n2+
n(n≥1,k≥3,k、n都為整數),
如第1個三角形數N(1,3)=×12+
×1=1;
第2個三角形數N(2,3)=×22+
×2=3;
第3個四邊形數N(3,4)=×32+
×3=9;
第4個四邊形數N(4,4)=×42+
×4=16.
(1)N(5,3)=________,N(6,5)=________;
(2)若N(m,6)比N(m+2,4)大10,求m的值;
(3)若記y=N(6,t)-N(t,5),試求出y的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com