日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

如圖,矩形紙片ABCD中,AB=8,將紙片折疊,使頂點B落在邊AD的E點上,BG=10.

(1)當折痕的另一端F在AB邊上時,如圖(1).求△EFG的面積.

(2)當折痕的另一端F在AD邊上時,如圖(2).證明四邊形BGEF為菱形,并求出折痕GF的長. 

 

 

【答案】

解:(1)過點G作GH⊥AD,

則四邊形ABGH為矩形,

∴GH=AB=8,AH=BG=10,

由圖形的折疊可知△BFG≌△EFG,

∴EG=BG=10,∠FEG=∠B=90°;∴EH=6,AE=4,∠AEF+∠HEG=90°,

∵∠AEF+∠AFE=90°,

∴∠HEG=∠AFE,

又∵∠EHG=∠A=90°,

∴△EAF∽△EHG,

,∴EF=5,

∴S△EFG=EF·EG=×5×10=25.

(2)由圖形的折疊可知四邊形ABGF≌四邊形HEGF,

∴BG=EG,AB=EH,∠BGF=∠EGF,

∵EF∥BG,∴∠BGF=∠EFG,∴∠EGF =∠EFG,∴EF=EG,

∴BG=EF,∴四邊形BGEF為平行四邊形,

又∵EF=EG,∴平行四邊形BGEF為菱形;

連結BE,BE、FG互相垂直平分,

在Rt△EFH中,EF=BG=10,EH=AB=8,

由勾股定理可得FH=AF=6,∴AE=16,

∴BE==8,∴BO=4

∴FG=2OG=2=4

【解析】根據軸對稱的性質,折疊前后圖形的形狀和大小不變和矩形的性質及直角三角形的性質,同角的余角相等,相似三角形的判定和性質,平行四邊形和菱形的判定和性質求解.

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

21、用剪刀將形狀如圖1所示的矩形紙片ABC沿著直線CM剪成兩部分,其中M為AD的中點,利用旋轉、平移、軸對稱等變換可以拼成一些新圖形,例如圖2中的Rt△BCE就是拼成的一個圖形.
(1)用這兩部分紙片除了可以拼成圖2外,還可以拼成一些四邊形,請你試一試,把拼好的四邊形分別畫在圖3、圖4的虛框內.
(2)由(1)可知直角三角形可以一刀切后拼成梯形,那么任一三角形(不等邊)能否一刀切后拼成梯形,如圖5,請你試一試.

查看答案和解析>>

科目:初中數學 來源: 題型:

27、情境觀察
將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉,使點D、A(A′)、B在同一條直線上,如圖2所示.
觀察圖2可知:與BC相等的線段是
AD
,∠CAC′=
90
°.

問題探究
如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數量關系,并證明你的結論.

拓展延伸
如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H.若AB=kAE,AC=kAF,試探究HE與HF之間的數量關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(1)數學課上,老師出了一道題,如圖①,Rt△ABC中,∠C=90°,AC=
12
AB
,求證:∠B=30°,請你完成證明過程.
(2)如圖②,四邊形ABCD是一張邊長為2的正方形紙片,E、F分別為AB、CD的中點,沿過點D的抓痕將紙片翻折,使點A落在EF上的點A′處,折痕交AE于點G,請運用(1)中的結論求∠ADG的度數和AG的長.
(3)若矩形紙片ABCD按如圖③所示的方式折疊,B、D兩點恰好重合于一點O(如圖④),當AB=6,求EF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•路南區(qū)一模)已知:有一紙片如圖,其中△ABC中,AD⊥BC,垂足為點D,BD=CD,點M在BA的延長線上.實施操作:將紙片沿一直線AN折疊,使AM和AC重合,并且過點C作CE⊥AN,垂足為點E.
(1)請用尺規(guī),在圖中畫出折線AN;(保留作圖痕跡)
(2)將圖形補全,求證:四邊形ADCE為矩形;
(3)當△ABC滿足什么條件時,四邊形ADCE是一個正方形?直接寫出結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

情境觀察
將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉,使點D、A(A′)、B在同一條直線上,如圖2所示.
觀察圖2可知:與BC相等的線段是
AD或A′D
AD或A′D
,∠CAC′=
90
90
°.

問題探究
如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數量關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 午夜噜噜噜 | 亚洲无限乱码一二三四麻 | 三级视频在线播放 | 日韩中文字幕免费在线播放 | 99久久精品毛片免费 | 玖玖玖影院 | 亚洲精品视频在线看 | av四虎| 亚洲第一免费网站 | 高清色 | 久热久热 | 99re6在线视频精品免费 | 久久久看片 | 国产69精品99久久久久久宅男 | av在线免费观看网站 | 久久另类 | 精久久 | 黄色三及毛片 | 精品国产乱码久久久久久久软件 | 国产精品毛片久久久久久久 | 91中文字幕在线观看 | 日韩不卡 | av免费在线播放 | 成人日韩视频 | 中文字幕一区二区三区四区 | 精品欧美一区二区三区久久久 | 99精品全国免费观看视频软件 | 武道仙尊动漫在线观看 | 午夜影院在线免费观看 | 日韩在线亚洲 | 久色成人 | 成人在线不卡 | 国产视频久久久久 | 成人精品免费视频 | 亚洲精品影院 | 在线成人国产 | 精品国产乱码久久久久久1区2区 | 亚州中文字幕蜜桃视频 | 日韩一区二区精品视频 | 黄色国产视频 | 国产小视频免费观看 |