【題目】如圖,Rt△AOB繞著一點旋轉到△A′OB′的位置,可以看到點A旋轉到點A′,OA旋轉到OA′,∠AOB旋轉到∠A′OB′,這些都是互相對應的點、線段和角.已知∠AOB=30°,∠AOB′=10°,那么點B的對應點是點______;線段OB的對應線段是線段_____;∠A的對應角是______;旋轉中心是點_______;旋轉的角度是______度.
科目:初中數學 來源: 題型:
【題目】如圖,已知,
.點
是射線
上一動點(與點
不重合),
、
分別平分
和
、分別交射線
于點
,
.
(1)①的度數是________;
②,
________;
(2)求的度數;
(3)當點運動時,
與
之間的數量關系是否隨之發生變化?若不變化,請寫出它們之間的關系,并說明理由;若變化,請寫出變化規律.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若兩條拋物線的頂點相同,則稱它們為“友好拋物線”,拋物線C1:y1=﹣2x2+4x+2與C2:u2=﹣x2+mx+n為“友好拋物線”.
(1)求拋物線C2的解析式.
(2)點A是拋物線C2上在第一象限的動點,過A作AQ⊥x軸,Q為垂足,求AQ+OQ的最大值.
(3)設拋物線C2的頂點為C,點B的坐標為(﹣1,4),問在C2的對稱軸上是否存在點M,使線段MB繞點M逆時針旋轉90°得到線段MB′,且點B′恰好落在拋物線C2上?若存在求出點M的坐標,不存在說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將矩形ABCD沿對角線AC翻折,點B落在點E處,EC交AD于F.
(1)求證:△AEF≌△CDF;
(2)若AB=4,BC=8,EF=3,求圖中陰影部分的面積。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知菱形ABCD的邊長為2,∠B=60°,點P、Q分別是邊BC、CD上的動點(不與端點重合),且BP=CQ.
(1)圖中除了△ABC與△ADC外,還有哪些三角形全等,請寫出來;
(2)點P、Q在運動過程中,四邊形APCQ的面積是否變化,如果變化,請說明理由;如果不變,請求出面積;
(3)當點P在什么位置時,△PCQ的面積最大,并請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,
①寫出A、B、C的坐標.
②以原點O為對稱中心,畫出△ABC關于原點O對稱的△A1B1C1,并寫出A1、B1、C1的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,四邊形為長方形,其中點
的坐標分別為
、
,且
軸,交
軸于點
,
交
軸于點
.
(1)求兩點坐標;
(2)一動點從
出發,以2個單位/秒的速度沿
向
點運動(不與
點重合),在
點運動過程中,連接
,
①試探究之間的數量關系;并說明理由;
②是否存在某一時刻,使三角形
的面積等于長方形
面積的
?若存在,求
的值并求此時點
的坐標;若不存在,請說明理由;
③三角形的面積記作
;三角形
的面積記作
;三角形
的面積記作
;直接寫出
、
、
的關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,把一條拋物線先向上平移3個單位長度,然后繞原點旋轉180°得到拋物線y=x2+5x+6,則原拋物線的解析式是( )
A. y=﹣(x﹣)2﹣
B. y=﹣(x+
)2﹣
C. y=﹣(x﹣)2﹣
D. y=﹣(x+
)2+
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com