【題目】如圖,在△ABC中,AB=AC,AE是BC邊上的高線(xiàn),BM平分∠ABC交AE于點(diǎn)M,經(jīng)過(guò)B,M 兩點(diǎn)的⊙O交BC于點(diǎn)G,交AB于點(diǎn)F ,F(xiàn)B為⊙O的直徑.
(1)求證:AM是⊙O的切線(xiàn)
(2)當(dāng)BE=3,cosC=時(shí),求⊙O的半徑.
【答案】(1)見(jiàn)解析;(2)
【解析】分析:(1)連結(jié) 根據(jù)BM平分∠ABC,得到
根據(jù)
,得到
根據(jù)等量代換得到
證明OM∥BC,AE是BC邊上的高線(xiàn),得到
,即可證明.
根據(jù)cosC=
=
,求出
的長(zhǎng)度,根據(jù)
, cos∠AOM = cosC=
,
得到AO=, AB=
+OB=
,求解即可.
詳解:(1)連結(jié)
∵BM平分∠ABC,
∴ 又
∴
∴ OM∥BC,
AE是BC邊上的高線(xiàn)
∴
∴
∴AM是⊙O的切線(xiàn)
(2)∵,
∴,
∴E是BC中點(diǎn),∴,
∵cosC==
,
∴
∵OM∥ BC,,
∴, ∴
又
∴
在中,cos∠AOM = cosC=
,
∴AO=,
AB=+OB=
,
而
∴=
,
OM=,
∴⊙O的半徑是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有理數(shù)a、b在數(shù)軸上的位置如圖所示,且|a|<|b|,下列各式中正確的個(gè)數(shù)是( )
①a+b<0;②b﹣a>0;③ ;④3a﹣b>0;⑤﹣a﹣b>0.
A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題:①全等三角形的對(duì)應(yīng)邊上的中線(xiàn),高線(xiàn),對(duì)應(yīng)角的平分線(xiàn)對(duì)應(yīng)相等;②兩邊和其中一邊上的中線(xiàn)(或第三邊上的中線(xiàn))對(duì)應(yīng)相等的兩個(gè)三角形全等;③兩角和其中一角的角平分線(xiàn)(或第三角的角平分線(xiàn))對(duì)應(yīng)相等的兩個(gè)三角形全等;④兩邊和其中一邊上的高線(xiàn)(或第三邊上的高線(xiàn))對(duì)應(yīng)相等的兩個(gè)三角形全等.其中正確命題有________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若拋物線(xiàn)L1:y=ax2+bx+c(a,b,c是常數(shù),abc≠0)與直線(xiàn)L2都經(jīng)過(guò)y軸上的一點(diǎn)P,且拋物線(xiàn)L1與頂點(diǎn)Q在直線(xiàn)L2上,則稱(chēng)此直線(xiàn)L2與該拋物線(xiàn)L1具有“一帶一路”關(guān)系,此時(shí),直線(xiàn)L2叫做拋物線(xiàn)L1的“帶線(xiàn)”,拋物線(xiàn)L1叫做直L2的“路線(xiàn)”.
(1) 若直線(xiàn)y=mx+1與拋物線(xiàn)y=x2-2x+n具有“一帶一路”關(guān)系,則m+n=_______.
(2) 若某“路線(xiàn)”L1的頂點(diǎn)在反比例函數(shù)的圖像上,它的“帶線(xiàn)” L2的解析式為y=2x-4,則此“路線(xiàn)”L的解析式為:_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某人在山坡坡腳A處測(cè)得電視塔尖點(diǎn)C 的仰角為60°,沿山坡向上走到P處再測(cè)得C的仰角為45°,已知OA=200米,山坡坡度為(即tan∠PAB=
),且O、A、B在同一條直線(xiàn)上,求電視塔OC的高度以及此人所在位置點(diǎn)P的垂直高度.(測(cè)傾器的高度忽略不計(jì),結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)材料,解答問(wèn)題
如圖,數(shù)軸上有點(diǎn),對(duì)應(yīng)的數(shù)分別是6,-4,4,-1,則
兩點(diǎn)間的距離為
;
兩點(diǎn)間的距離為
;
兩點(diǎn)間的距離為
;由此,若數(shù)軸上任意兩點(diǎn)
分別表示的數(shù)是
,則
兩點(diǎn)間的距離可表示為
.反之,
表示有理數(shù)
在數(shù)軸上的對(duì)應(yīng)點(diǎn)
之間的距離,稱(chēng)之為絕對(duì)值的幾何意義.
問(wèn)題應(yīng)用1:
(1)如果表示-1的點(diǎn)和表示
的點(diǎn)
之間的距離是2,則點(diǎn)
對(duì)應(yīng)的
的值為___________;
(2)方程的解
____________;
(3)方程的解
______________ ;
問(wèn)題應(yīng)用2:
如圖,若數(shù)軸上表示的點(diǎn)為
.
(4)的幾何意義是數(shù)軸上_____________,當(dāng)
__________,
的值最小是____________;
(5)的幾何意義是數(shù)軸上_______,
的最小值是__________,此時(shí)點(diǎn)
在數(shù)軸上應(yīng)位于__________上;
(6)根據(jù)以上推理方法可求的最小值是___________,此時(shí)
__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在桌面上,有若干個(gè)完全相同的小正方體堆成的一個(gè)幾何體,如圖所示.
(1)請(qǐng)畫(huà)出這個(gè)幾何體的三視圖.
(2)若將此幾何體的表面噴上紅漆(放在桌面上的一面不噴),則三個(gè)面上是紅色的小正方體有 個(gè).
(3)若現(xiàn)在你的手頭還有一些相同的小正方體可添放在幾何體上,要保持主視圖和左視圖不變,則最多可以添加___個(gè)小正方體.
(4)若另一個(gè)幾何體與幾何體
的主視圖和左視圖相同,而小正方體個(gè)數(shù)則比幾何體
多1個(gè),請(qǐng)?jiān)趫D2中畫(huà)出幾何體
的俯視圖中的任意兩種.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中,AD=4,AB=2,將矩形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0<α<90°)得到矩形AEFG.延長(zhǎng)CB與EF交于點(diǎn)H.
(1)求證:BH=EH;
(2)如圖2,當(dāng)點(diǎn)G落在線(xiàn)段BC上時(shí),求點(diǎn)B經(jīng)過(guò)的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】[閱讀理解]射線(xiàn)是
內(nèi)部的一條射線(xiàn),若
則我們稱(chēng)射線(xiàn)
是射線(xiàn)
的伴隨線(xiàn).
例如,如圖1,,則
,稱(chēng)射線(xiàn)
是射線(xiàn)
的伴隨線(xiàn):同時(shí),由于
,稱(chēng)射線(xiàn)
是射線(xiàn)
的伴隨線(xiàn).
[知識(shí)運(yùn)用]
(1)如圖2,,射線(xiàn)
是射線(xiàn)
的伴隨線(xiàn),則
,若
的度數(shù)是
,射線(xiàn)
是射線(xiàn)
的伴隨線(xiàn),射線(xiàn)
是
的平分線(xiàn),則
的度數(shù)是 .(用含
的代數(shù)式表示)
(2)如圖,如,射線(xiàn)
與射線(xiàn)
重合,并繞點(diǎn)
以每秒
的速度逆時(shí)針旋轉(zhuǎn),射線(xiàn)
與射線(xiàn)
重合,并繞點(diǎn)
以每秒
的速度順時(shí)針旋轉(zhuǎn),當(dāng)射線(xiàn)
與射線(xiàn)
重合時(shí),運(yùn)動(dòng)停止,現(xiàn)在兩射線(xiàn)同時(shí)開(kāi)始旋轉(zhuǎn).
①是否存在某個(gè)時(shí)刻(秒),使得
的度數(shù)是
,若存在,求出
的值,若不存在,請(qǐng)說(shuō)明理由;
②當(dāng)為多少秒時(shí),射線(xiàn)
中恰好有一條射線(xiàn)是其余兩條射線(xiàn)的伴隨線(xiàn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com