日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

【題目】如圖,RtABC中,∠C=90° DAB上,且CD=BD.

(1)求證:DAB的中點.

(2)CD為對稱軸將△ACD翻折至△A'CD,連接BA',若∠DBC=a,求∠CB A'的度數.

【答案】1)見解析;(2a

【解析】

1)利用等邊對等角易得∠DBC=DCB,再由等角的余角相等,可推出∠A=DCA,即可得證.

2)利用三角形外角性質可得∠ADC=2a,根據折疊可得AD=A'D,∠ADA'=2a,然后求出∠A'DB,再由等腰三角形底角相等,可求出∠DBA',減去a即為∠CB A'

1)證明:∵CD=BD

∴∠DBC=DCB

∵∠DBC+A=90°,∠DCB+ACD=90°,

∴∠A=ACD

CD=AD=BD

∴點DAB的中點

2)解:∵CD=BD

∴∠DCB=DBC=a

∴∠ADC=DCB+DBC =2a

折疊可得AD=A'D,∠ADA'=2a

∴∠A'DB=180°-ADC-ADA'=180°-4a

由(1)可知AD=BD,∴A'D=BD

∴△A'DB為等腰三角形,

∴∠DBA'=

∠CB A'=DBA'-DBC=a

∠CB A'的度數為a.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】1)補充完整:

如圖1,在正方形ABCD中,EF分別為DCBC邊上的點,且滿足∠EAF=45°,連結EF,試說明DE+BF=EF

解:將ADE繞點A順時針旋轉90°得到ABG,此時ABAD重合.由旋轉可得AB=ADGB=ED,∠1=2,∠ABG=D=90°

∴∠ABG+ABF=90°+90°=180°

∴點GBF在同一條直線上.

∵∠EAF=45°

∴∠2+3=BAD-EAF=90°-45°=45°

∵∠1=2

∴∠1+3=45°

∴∠GAF=

又∵AG=AEAF=AF

∴△GAF

=EF

DE+BF=BG+BF=GF=EF

2)類比引申:

如圖2,在四邊形ABCD中,AB=AD,∠BAD=90°,點EF分別在邊BCCD上,∠EAF=45°,若∠B、∠D都不是直角,則當∠B與∠D滿足等量關系 時,有EF=BE+DF

3)聯想拓展

如圖3,在ABC中,∠BAC=90°AB=AC,點DE均在邊BC上,且∠DAE=45°,試猜想BDDEEC滿足的等量關系,并寫出推理過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,本市新建一座圓形人工湖,為測量該湖的半徑,小杰和小麗沿湖邊選取A,B,C三根木柱,使得A,B之間的距離與A,C之間的距離相等,并測得BC長為120米,ABC的距離為4米,請你幫他們求出該湖的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.

(1)求證:CD是⊙O的切線;

(2)過點B作⊙O的切線交CD的延長線于點E,BC=6, .求BE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,CD是線段AB的垂直平分線,則∠CAD= CBD.請說明理由:

:CD是線段AB的垂直平分線,

AC=___ _ =BD. .

在△ACD和△BCD中,

. =BC

AD=_

CD=CD

∴△ACD__ ___ (_ . __) .

∴∠CAD=CBD (_ __ )

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,已知A(3,0)、B(4,4)、原點O(0,0)在拋物線y=ax2+bx+c (a≠0)上.

(1)求拋物線的解析式.

(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個交點D,求m的值及點D的坐標.

(3)如圖2,若點N在拋物線上,且NBO=ABO,則在(2)的條件下,求出所有滿足POD∽△NOB的點P的坐標(點P、O、D分別與點N、O、B對應)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】反比例函數和一次函數y=k2x+b的圖象交于點M(3,﹣)和點N(﹣1,2),則k1=_____,k2=____,一次函數的圖象交x軸于點_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCDCB中,若∠ACB=∠DBC,則不能證明兩個三角形全等的條件是( )

A.ABC=∠DCBB.A=∠DC.AB=DCD.AC=DB

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】設a,b是任意兩個不等實數,我們規定:滿足不等式a≤x≤b的實數x的所有取值的全體叫做閉區間,表示為[a,b].對于一個函數,如果它的自變量x與函數值y滿足:當m≤x≤n時,有m≤y≤n,我們就稱此函數是閉區間[m,n]上的“閉函數”.如函數y=﹣x+4,當x=1時,y=3;當x=3時,y=1,即當1≤x≤3時,恒有1≤y≤3,所以說函數y=﹣x+4是閉區間[1,3]上的“閉函數”,同理函數y=x也是閉區間[1,3]上的“閉函數”.

(1)反比例函數y=是閉區間[1,2018]上的“閉函數”嗎?請判斷并說明理由;

(2)如果已知二次函數y=x2﹣4x+k是閉區間[2,t]上的“閉函數”,求k和t的值;

3)如果(2)所述的二次函數的圖象交y軸于C點,A為此二次函數圖象的頂點,B為直線x=1上的一點,當ABC為直角三角形時,寫出點B的坐標.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久亚洲精品中文字幕 | 日韩一片| 99视频网站| 蜜桃久久久 | 一区二区日韩在线观看 | 中文字幕av亚洲精品一部二部 | 久久九九精品久久 | 久久毛片| 国产区视频 | 欧美日韩亚洲成人 | 91网站在线看 | av久久 | 九九久久免费视频 | 一本色道精品久久一区二区三区 | 精品成人久久 | 久久久久久国产精品 | 中文字幕亚洲一区二区三区 | 一区二区视频 | 日本一区二区视频 | 午夜免费小视频 | 免费看的毛片 | 久久国产一区二区 | 久热久热 | 91久久精品一区 | www.一区| 国产一区二区黄 | 国产伦精品一区二区三区照片91 | 性生生活大片免费看视频 | 精品国产一区二区 | 日韩一区二区中文字幕 | 区一区二免费视频 | 日韩一区二区免费视频 | 四虎成人在线视频 | 91在线精品秘密一区二区 | 色欧美片视频在线观看 | 美女福利视频网站 | wwwxxx日本| 日韩中文字幕免费在线 | 成人精品一区二区三区中文字幕 | 亚洲精品成人在线 | 久久新视频 |