【題目】如圖,△ABC的三個頂點坐標分別為A(2,3),B(3,1),C(5,4).
(1)畫出△ABC關于x軸對稱的△A1B1C1;
(2)以點P(1,﹣1)為位似中心,在如圖所示的網格中畫出△A1B1C1的位似圖形△A2B2C2,使△A2B2C2與△A1B1C1的相似比為2:1;
(3)畫出△ABC繞點C逆時針旋轉90°的△A′B′C′,并寫出線段BC掃過的面積
科目:初中數學 來源: 題型:
【題目】為了掌握八年級數學考試卷的命題質量與難度系數,命題組教師赴外地選取一個水平相當的八年級班級進行預測,將考試成績分布情況進行處理分析,制成如圖表(成績得分均為整數):
根據圖表中提供的信息解答下列問題:
組別 | 成績分組 | 頻數 |
A | 47.5~59.5 | 2 |
B | 59.5~71.5 | 4 |
C | 71.5~83.5 | a |
D | 83.5~95.5 | 10 |
E | 95.5~107.5 | b |
F | 107.5~120 | 6 |
(1)頻數分布表中的a= ,b= ;扇形統計圖中的m= ,n= ;
(2)已知全區八年級共有200個班(平均每班40人),用這份試卷檢測,108分及以上為優秀,預計優秀的人數約為 人,72分及以上為及格,預計及格的人數約為 人;
(3)補充完整頻數分布直方圖.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=540,以AB為直徑的⊙O分別交AC,BC于點D,E,過點B作⊙O的切線,交AC的延長線于點F。
(1)求證:BE=CE;
(2)求∠CBF的度數;
(3)若AB=6,求的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在扇形AOB中,∠AOB=90°,半徑OA=4.將扇形AOB沿過點B的直線折疊,點O恰好落在弧AB上點C處,折痕交OA于點D,則圖中陰影部分的面積為_______ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當BP=1時,tan∠OAE=,其中正確的結論是( )
A.①③B.①②③C.①③④D.①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,AB是⊙O的直徑,弦CD與AB交于點E,連接AD,過點A作直線MN,使∠MAC=∠ADC.
(1)求證:直線MN是⊙O的切線.
(2)若sin∠ADC=,AB=8,AE=3,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)作圖:作∠MON的平分線OE,在OE上任取一點A,過A作AB∥OM,AC∥ON,連接BC交OA于D.(只保留作圖痕跡)
(2)BC與OA的位置關系是什么?請加以證明.
(3)若OA=8,AC=5,則BD是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,二次函數的圖像經過點M(
,n),點N(
,n),交y軸于點A.
(1)求a,b滿足的關系式;
(2)若拋物線上始終存在不重合的P,Q兩點(P在Q的左邊)關于原點對稱.
①求a的取值范圍;
②若點A,P,Q三點到直線l:的距離相等,求線段PQ長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某水果連鎖店銷售某種熱帶水果,其進價為20元/千克.銷售一段時間后發現:該水果的日銷量(千克)與售價
(元/千克)的函數關系如圖所示:
(1)求關于
的函數解析式;
(2)當售價為多少元/千克時,當日銷售利潤最大,最大利潤為多少元?
(3)由于某種原因,該水果進價提高了元/千克(
),物價局規定該水果的售價不得超過40元/千克,該連鎖店在今后的銷售中,日銷售量與售價仍然滿足(1)中的函數關系.若日銷售最大利潤是
元,請直接寫出
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com