日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(1)問題探究
如圖1,分別以△ABC的邊AC與邊BC為邊,向△ABC外作正方形ACD1E1和正方形BCD2E2,過點C作直線KH交直線AB于點H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分別為點M,N.試探究線段D1M與線段D2N的數(shù)量關(guān)系,并加以證明.
(2)拓展延伸
①如圖2,若將“問題探究”中的正方形改為正三角形,過點C作直線K1H1,K2H2,分別交直線AB于點H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分別為點M,N.D1M=D2N是否仍成立?若成立,給出證明;若不成立,說明理由.
②如圖3,若將①中的“正三角形”改為“正五邊形”,其他條件不變.D1M=D2N是否仍成立?(要求:在圖3中補(bǔ)全圖形,注明字母,直接寫出結(jié)論,不需證明)
【答案】分析:(1)根據(jù)正方形的每一個角都是90°可以證明∠AHK=90°,然后利用平角等于180°以及直角三角形的兩銳角互余證明∠D1CK=∠HAC,再利用“角角邊”證明△ACH和△CD1M全等,根據(jù)全等三角形對應(yīng)邊相等可得D1M=CH,同理可證D2N=CH,從而得證;
(2)①過點C作CG⊥AB,垂足為點G,根據(jù)三角形的內(nèi)角和等于180°和平角等于180°證明得到∠H1AC=∠D1CM,然后利用“角角邊”證明△ACG和△CD1M全等,根據(jù)全等三角形對應(yīng)邊相等可得CG=D1M,同理可證CG=D2N,從而得證;
②結(jié)論仍然成立,與①的證明方法相同.
解答:(1)D1M=D2N.
證明:∵∠ACD1=90°,
∴∠ACH+∠D1CK=180°-90°=90°,
∵∠AHK=∠ACD1=90°,
∴∠ACH+∠HAC=90°,
∴∠D1CK=∠HAC,
在△ACH和△CD1M中,
∴△ACH≌△CD1M(AAS),
∴D1M=CH,
同理可證D2N=CH,
∴D1M=D2N;


(2)①證明:D1M=D2N成立.
過點C作CG⊥AB,垂足為點G,
∵∠H1AC+∠ACH1+∠AH1C=180°,
∠D1CM+∠ACH1+∠ACD1=180°,
∠AH1C=∠ACD1
∴∠H1AC=∠D1CM,
在△ACG和△CD1M中,
∴△ACG≌△CD1M(AAS),
∴CG=D1M,
同理可證CG=D2N,
∴D1M=D2N;

②作圖正確.
D1M=D2N還成立.
點評:本題考查了全等三角形的判定與性質(zhì),等邊三角形的性質(zhì),正方形的性質(zhì),正多邊形的性質(zhì),讀懂題意,證明得到∠D1CK=∠HAC(或∠H1AC=∠D1CM)是證明三角形全等的關(guān)鍵,也是解決本題的難點與突破口.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

27、情境觀察
將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示.
觀察圖2可知:與BC相等的線段是
AD
,∠CAC′=
90
°.

問題探究
如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

拓展延伸
如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H.若AB=kAE,AC=kAF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•煙臺)(1)問題探究
如圖1,分別以△ABC的邊AC與邊BC為邊,向△ABC外作正方形ACD1E1和正方形BCD2E2,過點C作直線KH交直線AB于點H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分別為點M,N.試探究線段D1M與線段D2N的數(shù)量關(guān)系,并加以證明.
(2)拓展延伸
①如圖2,若將“問題探究”中的正方形改為正三角形,過點C作直線K1H1,K2H2,分別交直線AB于點H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分別為點M,N.D1M=D2N是否仍成立?若成立,給出證明;若不成立,說明理由.
②如圖3,若將①中的“正三角形”改為“正五邊形”,其他條件不變.D1M=D2N是否仍成立?(要求:在圖3中補(bǔ)全圖形,注明字母,直接寫出結(jié)論,不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

情境觀察
將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示.
觀察圖2可知:與BC相等的線段是
AD或A′D
AD或A′D
,∠CAC′=
90
90
°.

問題探究
如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(山東煙臺卷)數(shù)學(xué)(帶解析) 題型:解答題

(1)問題探究
如圖1,分別以△ABC的邊AC與邊BC為邊,向△ABC外作正方形ACD1E1和正方形BCD2E2,過點C
作直線KH交直線AB于點H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分別為點M,N.試探究線段D1M與線段D2N的數(shù)量關(guān)系,并加以證明.
(2)拓展延伸
①如圖2,若將“問題探究”中的正方形改為正三角形,過點C作直線K1H1,K2H2,分別交直線AB于點H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分別為點M,N.D1M=D2N是否仍成立?若成立,給出證明;若不成立,說明理由.
②如圖3,若將①中的“正三角形”改為“正五邊形”,其他條件不變.D1M=D2N是否仍成立?(要求:在
圖3中補(bǔ)全圖形,注明字母,直接寫出結(jié)論,不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-相似的判定解答題(帶解析) 題型:解答題

情境觀察將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示.
觀察圖2可知:與BC相等的線段是 _________ ,∠CAC′= _________ °.

問題探究
如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

拓展延伸
如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H.若AB=kAE,AC=kAF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 国产欧美日韩综合 | 偷拍福利视频 | 国产欧美成人 | 久久精品视频网 | 免费在线小视频 | 亚洲免费a| 免费色片| 青娱乐福利视频 | 国产成人精品自拍 | 女教师合集乱500篇小说 | 日韩精品在线一区 | 亚洲精品美女 | 久久精品在线 | 91精品国产麻豆国产自产在线 | 亚洲黄色在线观看 | 免费视频一区二区 | av黄色在线观看 | 精品国产乱码一区二区三 | 五月天婷婷激情网 | 91福利网站 | 亚洲一区二区三区 | 欧美精品在线观看视频 | 久久伊人国产 | 黄色av免费看 | 国产伦精品一区二区免费 | 久久精品在线观看 | 免费观看全黄做爰大片视频美国 | 国产免费无遮挡 | 黄色影视在线观看 | 国产精品成人一区二区三区 | 午夜激情视频在线观看 | 欧美爱爱网 | 99在线观看视频 | 日韩一级在线观看 | 毛片tv | 福利视频1000 | 免费av网站在线观看 | 欧美性爽| 91免费国产 | 99久久婷婷国产综合精品草原 | 少妇特黄a一区二区三区 |